Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F\left(x\right)=x^6-x^3+x^2-x+1\)
\(=x^6-x^3+\dfrac{1}{4}+x^2-x+\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\left(x^3\right)^2-2x^3\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+x^2-2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
\(=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)
\(=>F\left(x\right)\) vô nghiệm
a) A(x)= -2x\(^6\)+ 5x\(^5\)+ x\(^4\)+ ( 2x + x )
= -2x\(^6\) + 5x\(^5\)+ x\(^4\)+ 3x
Bậc : 6
b) C(x)= A(x) + B(x)
A(x) + B(x) = -2x\(^6\)+ 5x\(^5\)+ x\(^4\)+3x + 6x\(^6\)- 5 x\(^5\)+2x\(^4\)+ 2x + 1
= (-2x\(^6\)+ 6x\(^6\))+(5x\(^5\)- 5x\(^5\))+(x\(^4\)+2x\(^4\))+(3x+2x)+1
=4x\(^6\)+3x\(^4\)+5x+1
Bậc :6
c) Đa thức C(x) không có nghiệm( vô nghiệm )
Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến
f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9
c) Tính f(x) + g(x); f(x) - g(x)
f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )
= 3x2 + x
f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9
= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )
= -2x5 - 14x4 - 2x3 -x2 + 7x + 18
day la bai toan co ban bạn cho da thuc =0 roi bạn thay x= -1 la tim dc m
mk lam cho bạn bai dau nhé;
m(-1) + 1 - 1 +1 = 0
m =1
vay nhe quỳnh
\(-1+\sqrt{2}\) hoặc \(-1-\sqrt{2}\) là nghiệm của đa thức F(x)
mk nhanh nhất, ai tk mik mik lại
\(E\left(x\right)=2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\) là nghiệm của đa thức
\(E\left(x\right)=0\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
Vậy...