Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì x và y tỷ lệ nghịch voeis nhau nên ta có công thức: x=a/y
=> 4=a/10
=>a=4x10
=>a=40
b) y=40/x
c) nếu x=5 => y=40/5=>y=8
nếu x= -8=> y=40/-8=>y=-5
HT
\(M=\left|x-2002\right|+\left|x-2001\right|\le\left|x-2002+2001-x\right|=1\)
Dấu " = " xảy ra <=>
TH1: x - 2002 và 2001 - x cùng bé hơn 0
+) x - 2002 < 0 => x =< 2002
+) 2001 - x < 0 => x > 2001
TH2 : x - 2002 và 2001 - x cùng lớn hơn 0
+) x - 2002 > 0 => x > 2002
+) 2001 - x > 0 => x < 2001 ( loại )
Vậy Mmin = 1 <=> x = 2002
\(M=\left|x-2002\right|+\left|x-2001\right|\)
\(M=\left|-\left(x-2002\right)\right|+\left|x-2001\right|\)
\(M=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng BĐT | a | + | b | ≥ | a + b | ta có :
\(M=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Dấu " = " xảy ra <=> ab ≥ 0
=> ( 2002 - x )( x - 2001 ) ≥ 0
TH1 : \(\hept{\begin{cases}2002-x\ge0\\x-2001\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-x\ge-2002\\x\ge2001\end{cases}}\Rightarrow\hept{\begin{cases}x\le2002\\x\ge2001\end{cases}}\Rightarrow2001\le x\le2002\)
TH2 : \(\hept{\begin{cases}2002-x\le0\\x-2001\le0\end{cases}}\Rightarrow\hept{\begin{cases}-x\le-2002\\x\le2001\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2002\\x\le2001\end{cases}}\)( loại )
=> MinM = 1 <=> 2001 ≤ x ≤ 2002
a,f(1/2)=5-2*(1/2)=5-1=4
f(3)=5-2x3=5-6=-1
b,Với y=5 thì 5-2x=5
2x=5-5
2x=0
x=0:2=0
Vậy x=0
Với y=-1 thì 5-2x=-1
2x=5-(-1)
2x=5+1
2x=6
x=6:2=3
Vậy x=3
Áp dụng BĐT trị tuyệt đối:
\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|=34\)
Vậy \(M_{min}=34\) khi \(\left(22-x\right)\left(x+12\right)\ge0\Rightarrow-12\le x\le22\)
a) Thay f(1/2) vào hàm số ta có :
y=f(1/2)=5-2.(1/2)=4
Thay f(3) vào hàm số ta có :
y=f(3)=5-2.3=-1
b) y=5-2x <=> 5-2x=5
2x=5-5
2x=0
=> x=0
<=> 5-2x=-1
2x=5-(-1)
2x=6
=> x=3
a, f (1/2) = 5 - 2.1/2 = 4
f (3) = 5 - 2.3 = -1
b, y = 5 <=> 5 - 2x = 5
<=> x = 0
y = -1 <=> 5 - 2x = -1
<=> x = 3
_Hok tốt_
( sai thì thôi nha )
???
\(M=\left|x-22\right|+\left|x+12\right|\)
\(M=\left|22-x\right|+\left|x+12\right|\ge\left|22-x+x+12\right|\)
\(M=\left|22-x\right|+\left|x+12\right|\ge34\)
\(M\ge34\)
Dấu "\(=\)" xảy ra khi:
\(\left(22-x\right)\left(x+12\right)\ge0\)
\(TH1:22-x\ge0;x+12\ge0\)
\(\Rightarrow22\ge x\ge-12\)
\(TH2:22-x\le0;x+12\ge0\)
\(\Rightarrow22\le x;x\ge12\left(vô.lý\right)\)
Vậy \(GTNN\) của \(M\) là \(34\) khi \(22\ge x\ge-12\)