Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
IE\(\perp\)AC (I\(\in\)BE mà BE \(\perp\)AC)
MQ\(\perp\)AC (GT)
\(\Rightarrow\)IE // MQ
Lại có:
MI \(\perp\)BE (GT)
EQ\(\perp\) BE (E;Q\(\in\)AC ; BE\(\perp\)AC)
\(\Rightarrow\)MI // EQ
mà IE // MQ (CMT)
Vậy tứ giác MIEQ có các cạnh đối song song.
b) Vì: MI // EQ (CMT)
\(\Rightarrow\)\(\widehat{ACB}\)=\(\widehat{IMB}\) (Đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\) (TG ABC cân tại A)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{IMB}\)
Xét tg BKM vg tại K và tg MIB vg tại I
BM chung
\(\widehat{ABC}=\widehat{IMB}\)(CMT)
Vậy: TG BKM=TG MIB (CH-GN)
c) Vì: TG BKM=TG MIB (CMT)
\(\Rightarrow\)MK=BI ( CTỨ)
Xét tg IEM vg tại I và tg QME vg tại Q:
EM chung
\(\widehat{IEM}=\widehat{EMQ}\)(Soletrong do IE // MQ)
Vậy TG IEM= TG QME (CH-GN)
\(\Rightarrow\)MQ=IE (CTỨ)
Ta có: BE= BI + IE (B,I,E thẳng hàng)
mà\(\hept{\begin{cases}BI=MI\left(CMT\right)\\IE=MQ\left(CMT\right)\end{cases}}\)
\(\Rightarrow\)BE=MK+MQ
Bạn tự vẽ hình nha.
a,Xét tg ABE và tg HBE:
^BAE=^BHE=90*
^ABE=^HBE(BE là pg)
BE chung
=>tg ABE= tg HBE(ch-gn)
b,+,tg ABC có:^BAC=90*,^ABC=60*
=>^C=30*
+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)
=>^HEB=60*
Mà HK // BE
=>^HBE=^EHK=60*(slt)
+, tg CHE có:^EHC=90*,^C=30*
=>HEC=60*
+,tg HEK có:
^EHK=60*,^HEC(^HEK)=60*
=>TG HEK đều(dhnb)
Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.
c, +,CM:tg AEM=tg HEC(cgv-gnk)
=>AM=HC
+,CM:BM=BC
+,CM:tg BMI=tgBCI(cgc)
=>NM=NC
Xong r nha. Chúc bạn học tốt.