K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

a) Ta có:

IE\(\perp\)AC  (I\(\in\)BE mà BE \(\perp\)AC)
MQ\(\perp\)AC (GT)

\(\Rightarrow\)IE // MQ

Lại có:

MI \(\perp\)BE (GT)

EQ\(\perp\) BE (E;Q\(\in\)AC ; BE\(\perp\)AC)

\(\Rightarrow\)MI // EQ

mà IE // MQ (CMT)

Vậy tứ giác MIEQ có các cạnh đối song song.

b) Vì: MI // EQ (CMT)

\(\Rightarrow\)\(\widehat{ACB}\)=\(\widehat{IMB}\) (Đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\) (TG ABC cân tại A)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{IMB}\)

Xét tg BKM vg tại K và tg MIB vg tại I

BM chung

\(\widehat{ABC}=\widehat{IMB}\)(CMT)

Vậy: TG BKM=TG MIB (CH-GN)

c) Vì: TG BKM=TG MIB (CMT)

\(\Rightarrow\)MK=BI ( CTỨ)

Xét tg IEM vg tại I và tg QME vg tại Q:

EM chung

\(\widehat{IEM}=\widehat{EMQ}\)(Soletrong do IE // MQ)

Vậy TG IEM= TG QME (CH-GN)

\(\Rightarrow\)MQ=IE (CTỨ)

Ta có: BE= BI + IE (B,I,E thẳng hàng)

\(\hept{\begin{cases}BI=MI\left(CMT\right)\\IE=MQ\left(CMT\right)\end{cases}}\)

\(\Rightarrow\)BE=MK+MQ

19 tháng 2 2020

Ai trả lời giúp tôi với ple