K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) Ta có:
IE\(\perp\)AC (I\(\in\)BE mà BE \(\perp\)AC)
MQ\(\perp\)AC (GT)
\(\Rightarrow\)IE // MQ
Lại có:
MI \(\perp\)BE (GT)
EQ\(\perp\) BE (E;Q\(\in\)AC ; BE\(\perp\)AC)
\(\Rightarrow\)MI // EQ
mà IE // MQ (CMT)
Vậy tứ giác MIEQ có các cạnh đối song song.
b) Vì: MI // EQ (CMT)
\(\Rightarrow\)\(\widehat{ACB}\)=\(\widehat{IMB}\) (Đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\) (TG ABC cân tại A)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{IMB}\)
Xét tg BKM vg tại K và tg MIB vg tại I
BM chung
\(\widehat{ABC}=\widehat{IMB}\)(CMT)
Vậy: TG BKM=TG MIB (CH-GN)
c) Vì: TG BKM=TG MIB (CMT)
\(\Rightarrow\)MK=BI ( CTỨ)
Xét tg IEM vg tại I và tg QME vg tại Q:
EM chung
\(\widehat{IEM}=\widehat{EMQ}\)(Soletrong do IE // MQ)
Vậy TG IEM= TG QME (CH-GN)
\(\Rightarrow\)MQ=IE (CTỨ)
Ta có: BE= BI + IE (B,I,E thẳng hàng)
mà\(\hept{\begin{cases}BI=MI\left(CMT\right)\\IE=MQ\left(CMT\right)\end{cases}}\)
\(\Rightarrow\)BE=MK+MQ