Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,với m=4=>phương trình(1) <=>\(x^2+x+4-5=0\Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1.\left(-1\right)=5\Rightarrow\hept{\begin{cases}x1=\frac{-1+\sqrt{5}}{2}\\x2=\frac{-1-\sqrt{5}}{2}\end{cases}}\)
2 để phương trình có 2 nghiệm phân biệt =>\(\Delta>0\Leftrightarrow1^2-4.1.\left(m-5\right)>0\)
\(\Leftrightarrow1-4m+20>0\Leftrightarrow m< \frac{21}{4}\)áp dụng hệ thức vi-ét ta có
\(\hept{\begin{cases}x1+x2=\frac{-b}{a}=-1\hept{\begin{cases}-x1=x2+1\\-x2=x1=1\end{cases}}\\x1.x2=\frac{c}{a}=m-5\end{cases}}\)
để \(\frac{6-m-x1}{x2}+\frac{6-m-x2}{x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{m-6+x1}{-x2}+\frac{m-6+x2}{-x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{\left(m-5\right)+\left(x1+1\right)-2}{x1+1}+\frac{\left(m-5\right)+\left(x2+1\right)-2}{x2+1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{x1.x2}{x1+1}+1-\frac{2}{x1+1}+\frac{x1.x2}{x2+1}+1-\frac{2}{x2+1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{x1.x2}{-x2}+1-\frac{2}{-x2}+\frac{x1.x2}{-x1}+1-\frac{2}{-x1}=\frac{10}{3}\)
\(\Leftrightarrow-x1+1+\frac{2}{x2}-x2+1+\frac{2}{x1}=\frac{10}{3}\)
\(\Leftrightarrow-\left(x1+x2\right)+1+1+\frac{2x_2+2x_1}{x2.x2}=\frac{10}{3}\)
\(\Leftrightarrow3+\frac{2\left(x1+x2\right)}{x2.x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{2.\left(-1\right)}{m-5}=\frac{1}{3}\)
\(\Leftrightarrow\frac{-2}{m-5}=\frac{1}{3}\)
\(\Rightarrow m-5=-2.3\)
\(\Leftrightarrow m-5=-6\Leftrightarrow m=-1\)(t/m)
vậy m=1
a) Thay m = -12 vào phương trình ta có
x2 + 5x – 14 = 0
<=> x2 + 7x - 2x - 14 = 0
<=> (x2 + 7x ) - (2x + 14) = 0
<=> x(x + 7) - 2(x + 7) = 0
<=> (x - 2)( x + 7) = 0
<=> x - 2 = 0 hoặc x + 7 = 0
<=> x = 2 hoặc x = -7
Vậy tập nghiệm của phương trình là S={-7 ; 2 }
Em chỉ iết làm câu này câu sau em xin lỗi!
a, Thay m =-12 vào phương trình trên ta được :
\(PT\Leftrightarrow x^2+5x-14=0\)
Ta có : \(\Delta=25-4\left(-14\right)=25+56=81>0\)
Vậy ta có 2 nghiệm phân biệt
\(x_1=\frac{-5-9}{2}=-7;x_2=\frac{-5+9}{2}=2\)
Vậy với m = -12 thì x = -7 ; 2
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{-5}{2}\\x_1x_2=\frac{c}{a}=\frac{m-2}{2}\end{cases}}\)
Ta có : \(\frac{1}{x_1-1}+\frac{1}{x_2-1}=2\)ĐK : \(x_1\ne1;x_2\ne1\)
Gọi \(x_1=a;x_2=b\)( em đặt cho dễ viết thôi nhé )
\(\frac{1}{a-1}+\frac{1}{b-1}=2\)
\(\Leftrightarrow\frac{b-1+a-1}{\left(a-1\right)\left(b-1\right)}=\frac{2\left(a-1\right)\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}\)
\(\Rightarrow a+b-2=2\left(ab-a-b+1\right)\)
\(\Leftrightarrow a+b-2=2\left[ab-\left(a+b\right)+1\right]\)
hay \(-\frac{5}{2}-2=2\left(\frac{m-2}{2}+\frac{5}{2}+1\right)\)
\(\Leftrightarrow\frac{-9}{2}=2\left(\frac{m+5}{2}\right)\Leftrightarrow\frac{-9}{2}=\frac{2m+10}{2}\)
\(\Rightarrow2m+10=-9\Leftrightarrow m=-\frac{19}{2}\)
a, Thay m = 3 vào phương trình trên ta được : \(PT\Leftrightarrow x^2-3x-4=0\)
Ta có : \(\Delta=9+16=25>0\)
phương trình có 2 nghiệm phân biệt
\(x_1=\frac{3-5}{2}=-1;x_2=\frac{3+5}{2}=4\)
Vậy với m = 3 thì x = -1 ; 4
b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)
Ta có : \(x_1\left(x_2^2+1\right)+x_2\left(x_1^2+1\right)>6\)
\(\Leftrightarrow x_1x_2^2+x_1+x_2x_1^2+x_2>6\)
\(\Leftrightarrow-4x_2+m-4x_1>6\)
\(\Leftrightarrow-4\left(x_2+x_1\right)+m>6\)
\(\Leftrightarrow-3m>6\Leftrightarrow m< -2\)
b,
Trước tiên để pt có hai nghiệm phân biệt thì:
Δ′=22−(m+2)>0⇔m<2Δ′=22−(m+2)>0⇔m<2
Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:
{x1+x2=4x1x2=m+2{x1+x2=4x1x2=m+2
Khi đó:
x21+x22=3(x1+x2)x12+x22=3(x1+x2)
⇔(x1+x2)2−2x1x2=3(x1+x2)⇔(x1+x2)2−2x1x2=3(x1+x2)
⇔42−2(m+2)=3.4⇔42−2(m+2)=3.4
⇔m+2=2⇒m=0⇔m+2=2⇒m=0 (thỏa mãn)
Vậy m=0
a) Thay m = 2 vào phương trình ta có
<=> x2 - 4x + 4 = 0
<=> x2 - 2.2x + 22 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2
Vậy tập ngiệm của phương trình là S ={2}
Xin lỗi đây là giới hạn của em
a, Thay m = 2 vào phương trình trên ta được :
\(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy với m = 2 thì x = 2
b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=4\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)
\(x_1^2+x_2^2=3m+6\)
mà \(x_1+x_2=4\Leftrightarrow\left(x_1+x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2=16-2x_1x_2\)
hay \(16-2\left(m+2\right)=3m+6\Leftrightarrow16-2m-4=3m+6\)
\(\Leftrightarrow6=5m\Leftrightarrow m=\frac{6}{5}\)