K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Đáp án C

Số tam giác có 3 đỉnh đều thuộc P là  C 10 3

9 tháng 9 2019

- Chọn 3 điểm trong 18 điểm đã cho làm 3 đỉnh của một tam giác. Mỗi tam giác là một tổ hợp chập 3 của 18. Vì vậy số tam giác là C183 (chọn phương án B)

8 tháng 6 2019

Đáp án B.

Số tam giác có 3 đỉnh là 3 trong 15 điểm đã cho bằng số cách chọn 3 điểm trong 15 điểm đã cho và bằng IQN5rTt7x449.png(không quan tâm đến thứ tự đỉnh)

2 tháng 9 2018

Chọn B

Số tam giác có 3 đỉnh thuộc S bằng số tổ hợp chập 3 của 10:  C 10 3 = 120

19 tháng 8 2018

Chọn B                   

Mỗi tam giác cần 3 đỉnh thuộc S, mỗi tam giác được tạo thành là một tổ hợp chập 3 của 10 phần tử.

Vậy số tam giác thỏa mãn là C 10 3 = 120.

Mức độ nhận biết, thông hiểu

3 tháng 4 2017

Mỗi tập con gồm 3 điểm (không phân biệt thứ tự) của tập hợp 6 điểm đã cho xác định duy nhất một tam giác. Từ đó ta có: số tam giác có thể lập được (từ 6 điểm đã cho) là:

C36 = = 20 (tam giác)


28 tháng 2 2018

23 tháng 12 2021

Chọn 3 điểm trong 15 điểm có: \(C^3_{15}\)(cách chọn)

Chọn 3 điểm trong 6 điểm thẳng hàng có:\(C^3_6\)(cách)
=>Số tam giác được tạo thành từ 15 điểm đã cho là: \(C^3_{15}-C^3_6\)(tam giác)

4 tháng 4 2017

undefined

5 tháng 4 2017

Giải:

Vì lấy 2 điểm nên:

\(C^2_6=15\rightarrow n\left(\Omega\right)=15\)

Gọi:

\(A\) là biến cố "2 thẻ lấy ra là 2 cạnh của lục giác"

\(B\) là biến cố "2 thẻ lấy ra là đường chéo của lục giác"

\(C\) là biến cố "2 thẻ lấy ra là đường chéo của 2 cạnh đối diện của lục giác"

a) \(n\left(A\right)=6\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{6}{15}=\dfrac{2}{5}\)

b) \(B=\overline{A}\Rightarrow P\left(B\right)=1-P\left(A\right)=1-\dfrac{2}{5}=\dfrac{3}{5}\)

c) \(n\left(C\right)=6\Rightarrow P\left(C\right)=\dfrac{n\left(C\right)}{n\left(\Omega\right)}=\dfrac{3}{15}=\dfrac{1}{5}\)