K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

\(26^{14}>25^{14}=\left(5^2\right)^{14}=5^{28}\)

\(5^{30}=\left(5^3\right)^{10}=125^{10}>124^{10}\)

\(4^{21}=\left(4^3\right)^7=64^7>64^2\)

\(27^{16}.16^9=\left(3^3\right)^{16}.\left(4^2\right)^9=3^{48}.4^{18}>12^{18}=3^{18}.4^{18}\)

\(31^{11}<32^{11}=\left(2^5\right)^{11}=2^{55}\)

\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)

\(2^{56}>2^{55}\) => \(17^{14}>31^{11}\)

Các bài khác làm tương tự

 

26 tháng 6 2015

\(31^{11}>22^{11}=2^{11}.11^{11}>11^3.11^{11}=11^{14}\)

 

19 tháng 1 2017

a)8^28 = (2^2)^14 = 4^14

vì 2< 26 nên 2^14 < 26^14

Đối với dạng so sánh lũy thừa b nên đưa về cùng cơ số hoặc cùng số mũ để so sánh

phần b bạn đưa về cùng số mũ là 10

phần c b đưa về cùng cơ số là 64

8 tháng 7 2015

3111<3211=(25)11=255

=>3111<255

1714>1614=(24)14=256

1714>256

vì 255<256 nên

3111<255<256<1714

vậy 3111<1714

25 tháng 9 2016

31^11 và 17^14

Ta có:31^11<32^11=(2^5)^11=2^55

         17^14>16^14=(2^4)^14=2^56

=>31^11<2^55<2^56<17^14

=>31^11<17^14

Vậy 31^11<17^14

4 tháng 10 2015

a, 9^5>27^3

​b,3^200>2^300

​c, 32^11<17^14

30 tháng 3 2020

a) 1714>1614=256>255=3211>3111

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

a)

$31^{11}< 32^{11}=(2^5)^{11}=2^{55}$

$17^{14}> 16^{14}=(2^4)^{14}=2^{56}> 2^{55}$

$\Rightarrow 31^{11}< 17^{14}$

b)

Gọi $d$ là ƯCLN của $a,b$. Khi đó, đặt $a=dx, b=dy$ (với $x,y$ nguyên tố cùng nhau, $x,y\in\mathbb{N}^*$)

$\Rightarrow $ BCNN$(a,b)=dxy$

Ta có: \(\left\{\begin{matrix} dx+2dy=48\\ d+3dxy=114\end{matrix}\right.\Rightarrow \left\{\begin{matrix} d(x+2y)=48\\ d(1+3xy)=114\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 48\vdots d\\ 114\vdots d\end{matrix}\right.\) nên $d$ là ước chung của $48,114$. Khi đó $d$ có thể nhận các giá trị là $1,2,3,6$

Nếu $d=1$ thì \(1+3xy=114\Rightarrow xy=\frac{113}{3}\not\in\mathbb{N}\) (loại)

Nếu $d=2$ thì $xy=\frac{56}{3}\not\in\mathbb{N}$ (loại)

Nếu $d=3$ thì $xy=\frac{37}{3}$ (loại)

Nếu $d=6$ thì \(\left\{\begin{matrix} x+2y=8\\ xy=6\end{matrix}\right.\). Vì $x=8-2y$ chẵn và nên kết hợp với $xy=6$ ta suy ra $x=2$ hoặc $x=6$.

Nếu $x=2\Rightarrow y=3$ (thỏa mãn). Kéo theo $a=dx=12; b=dy=18$

Nếu $x=6\Rightarrow y=1$ (thỏa mãn). Kéo theo $a=dx=36, b=dy=6$