K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

a) \(82^{10}>9^{13}\)

b) \(9^{10}>10^9\)

22 tháng 9 2015

1) Ta có :\(82^{10}>81^{10}=\left(9^2\right)^{10}=9^{20}>9^{13}\)

                       ===>\(82^{10}>9^{13}\)

 

27 tháng 9 2015

910 > 109

Tick cho mình nha các bạn >

23 tháng 9 2015

Phải giải thích làm sao lớn chứ!

23 tháng 1 2019

\(taco\)

\(A=\frac{10^8+1}{10^9+1}\Rightarrow10A=1+\frac{9}{10^9+1}\)

\(B=\frac{10^9+1}{10^{10}+1}\Rightarrow10B=1+\frac{9}{10^{10}+1}\)

\(Vì:\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\Rightarrow10A>10B\Rightarrow A>B\)

23 tháng 1 2019

Ta có:

\(A=\frac{10^8+1}{10^9+1}\Leftrightarrow10A=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)

\(B=\frac{10^9+1}{10^{10}+1}\Leftrightarrow10B=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)

Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)

\(\Rightarrow10A>10B\)\(\Rightarrow A>B\)

Vậy A>B

20 tháng 8 2020

a) Đặt A = \(\frac{5^{12}+1}{5^{13}+1}\Rightarrow5A=\frac{5^{13}+5}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

Đặt \(B=\frac{5^{11}+1}{5^{12}+1}\Rightarrow5B=\frac{5^{12}+5}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

Vì \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

20 tháng 8 2020

Áp dụng công thức : \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m\in N\right)\)

Ta có : \(A=\frac{5^{12}+1}{5^{13}+1}< 1\)

\(\Leftrightarrow A=\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}=\frac{5^{12}+5}{5^{13}+5}=\frac{5\left(5^{11}+1\right)}{5\left(5^{12}+1\right)}=B\)

\(\Leftrightarrow A< B\)

12 tháng 11 2016

quá dễ