Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
b, A =(1/101+1/102+....+1/150)+(1/151+1/152+.....+1/200)
A>1/150.50+1/200.50=1/3+1/4=7/12
b tách A thành bốn nhóm rồi cũng làm như trên,ta có
A>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8
=107/210+1/8>1/2+1/8=5/8
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
\(B=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...\dfrac{1}{200}\right)>\dfrac{1}{150}+..\dfrac{1}{150}+\dfrac{1}{200}+..+200=\dfrac{50}{150}+\dfrac{50}{200}=\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{4}{12}+\dfrac{3}{12}=\dfrac{7}{12}\)Vậy ... (ta có điều phải chứng minh )
Ta có :\(\dfrac{1}{20}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
Do đó : \(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+..+\dfrac{1}{200}=\dfrac{181}{200}>\dfrac{180}{200}=\dfrac{9}{10}\)Vậy ...
cau 1
de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat
suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong
suy ra 4a-23=1
suy ra 4a=1+23=24
suy ra a=24 chia 4=6
vay de a nho nhat thi a=6
ta có: \(\dfrac{1}{M}=\dfrac{101^{103}+1}{101^{102}+1}=\dfrac{101^{103}+101-100}{101^{102}+1}=1-\dfrac{100}{101^{102}+1}\)
\(\dfrac{1}{N}=\dfrac{101^{104}+1}{101^{103}+1}=\dfrac{101^{104}+101-100}{101^{103}+1}=1-\dfrac{100}{101^{103}+1}\)
vì \(\dfrac{100}{101^{102}+1}>\dfrac{100}{101^{103}+1}\Rightarrow1-\dfrac{100}{101^{102}+1}< 1-\dfrac{100}{101^{103}+1}\Rightarrow\dfrac{1}{M}< \dfrac{1}{N}\Rightarrow M>N\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{150}\)
\(\dfrac{1}{102}>\dfrac{1}{150}\)
....
\(\dfrac{1}{150}=\dfrac{1}{150}\)
=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)
Ta có:
\(\dfrac{1}{152}>\dfrac{1}{200}\)
\(\dfrac{1}{153}>\dfrac{1}{200}\)
....
\(\dfrac{1}{200}=\dfrac{1}{200}\)
=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)
=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(A>\dfrac{7}{12}\)
\(Tacó\)
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
...
\(\dfrac{1}{999}>\dfrac{1}{200}\)
Do đó :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{999}+\dfrac{1}{200}>\dfrac{1}{200}+...+\dfrac{1}{200}=100.\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Ta lại có:
\(\dfrac{1}{102}< \dfrac{1}{101}\)
\(\dfrac{1}{103}< \dfrac{1}{101}\)
...
\(\dfrac{1}{200}< \dfrac{1}{101}\)
Do đó : \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{1}{101}.100=\dfrac{100}{101}< 1\)Vậy ...( theo tớ , cậu nên đánh dấu (1) và (2) rồi suy ra ) .. khẳng định trên , học tốt
a)
Ta thấy:
\(\dfrac{1}{6}< \dfrac{1}{5}\)
\(\dfrac{1}{7}< \dfrac{1}{5}\)
\(\dfrac{1}{8}< \dfrac{1}{5}\)
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\dfrac{1}{11}< \dfrac{1}{10}\)
\(\dfrac{1}{12}< \dfrac{1}{10}\)
\(\dfrac{1}{13}< \dfrac{1}{10}\)
...
\(\dfrac{1}{17}< \dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 5\cdot\dfrac{1}{5}+8\cdot\dfrac{1}{10}=1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)
Vậy \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
b)
Ta thấy:
\(\dfrac{1}{101}>\dfrac{1}{300}\)
\(\dfrac{1}{102}>\dfrac{1}{300}\)
\(\dfrac{1}{103}>\dfrac{1}{300}\)
...
\(\dfrac{1}{299}>\dfrac{1}{300}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>200\cdot\dfrac{1}{300}=\dfrac{2}{3}\)
Vậy \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>\dfrac{2}{3}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)