Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{150}\)
\(\dfrac{1}{102}>\dfrac{1}{150}\)
....
\(\dfrac{1}{150}=\dfrac{1}{150}\)
=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)
Ta có:
\(\dfrac{1}{152}>\dfrac{1}{200}\)
\(\dfrac{1}{153}>\dfrac{1}{200}\)
....
\(\dfrac{1}{200}=\dfrac{1}{200}\)
=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)
=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(A>\dfrac{7}{12}\)
\(B=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...\dfrac{1}{200}\right)>\dfrac{1}{150}+..\dfrac{1}{150}+\dfrac{1}{200}+..+200=\dfrac{50}{150}+\dfrac{50}{200}=\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{4}{12}+\dfrac{3}{12}=\dfrac{7}{12}\)Vậy ... (ta có điều phải chứng minh )
Ta có :\(\dfrac{1}{20}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
Do đó : \(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+..+\dfrac{1}{200}=\dfrac{181}{200}>\dfrac{180}{200}=\dfrac{9}{10}\)Vậy ...
a)
Ta thấy:
\(\dfrac{1}{6}< \dfrac{1}{5}\)
\(\dfrac{1}{7}< \dfrac{1}{5}\)
\(\dfrac{1}{8}< \dfrac{1}{5}\)
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\dfrac{1}{11}< \dfrac{1}{10}\)
\(\dfrac{1}{12}< \dfrac{1}{10}\)
\(\dfrac{1}{13}< \dfrac{1}{10}\)
...
\(\dfrac{1}{17}< \dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 5\cdot\dfrac{1}{5}+8\cdot\dfrac{1}{10}=1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)
Vậy \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
b)
Ta thấy:
\(\dfrac{1}{101}>\dfrac{1}{300}\)
\(\dfrac{1}{102}>\dfrac{1}{300}\)
\(\dfrac{1}{103}>\dfrac{1}{300}\)
...
\(\dfrac{1}{299}>\dfrac{1}{300}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>200\cdot\dfrac{1}{300}=\dfrac{2}{3}\)
Vậy \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{300}>\dfrac{2}{3}\)
Ta có:
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\) (có 50 số hạng)
⇔ \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{3}\) \(\left(1\right)\)
\(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (có 50 số hạng)
⇔ \(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{4}\) \(\left(2\right)\)
Từ (1) và (2), cộng vế theo vế. Ta được:
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}+\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
⇒ \(ĐPCM\)
Giải:
Đặt \(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)
Ta có:
\(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)
\(\Rightarrow A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
Nhận xét:
\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{1}{3}\)
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)
\(\Rightarrow A< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)
\(\Rightarrow A< \dfrac{4}{5}\left(1\right)\)
Lại có:
\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{1}{6}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{36}{60}=\dfrac{3}{5}\)
\(\Rightarrow A>\dfrac{3}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{3}{5}< A< \dfrac{4}{5}\)
Vậy \(\dfrac{3}{5}< \dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{4}{5}\) (Đpcm)
Đặt A=131+132+133+...+159+160A=131+132+133+...+159+160
Ta có:
A=131+132+133+...+159+160A=131+132+133+...+159+160
⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13
141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14
151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15
⇒A<13+14+15=4760<4860=45⇒A<13+14+15=4760<4860=45
⇒A<45(1)⇒A<45(1)
Lại có:
131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14
141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15
151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16
⇒A>14+15+16=3760>3660=35⇒A>14+15+16=3760>3660=35
⇒A>35(2)⇒A>35(2)
Từ (1)(1) và (2)(2)
⇒35<A<45⇒35<A<45
Vậy 35<131+132+133+...+159+160<4535<131+132+133+...+159+160<45
Đặt:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< 1\rightarrowđpcm\)
Ta thấy:
\(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
...
\(\dfrac{1}{100}< \dfrac{1}{50}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\left(1\right)\)
Lại có:
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
...
\(\dfrac{1}{100}=\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{2}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\)\(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)
\(Tacó\)
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
...
\(\dfrac{1}{999}>\dfrac{1}{200}\)
Do đó :\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{999}+\dfrac{1}{200}>\dfrac{1}{200}+...+\dfrac{1}{200}=100.\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Ta lại có:
\(\dfrac{1}{102}< \dfrac{1}{101}\)
\(\dfrac{1}{103}< \dfrac{1}{101}\)
...
\(\dfrac{1}{200}< \dfrac{1}{101}\)
Do đó : \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{1}{101}.100=\dfrac{100}{101}< 1\)Vậy ...( theo tớ , cậu nên đánh dấu (1) và (2) rồi suy ra ) .. khẳng định trên , học tốt