Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì 20 < 21 nên \(5^{20}< 5^{21}\)hay \(625^5< 125^7\)
~ Hok tốt ~
a) \(625^5\)= \(\left(5^4\right)^5\)= \(5^{20}\)
\(125^7\)= \(\left(5^3\right)^7\)= \(5^{21}\)
Vì \(5^{20}\)< \(5^{21}\)
Nên \(625^5\)< \(125^7\)
b) \(5^{36}\)= \(3^{3.12}\)= \(\left(5^3\right)^{12}\)= \(125^{12}\)
\(11^{24}\)= \(11^{2.12}\)= \(\left(11^2\right)^{12}\)= \(121^{12}\)
Vì \(125^{12}\)> \(121^{12}\)
Nên \(5^{36}\)> \(11^{24}\)
c) Ghi ko rõ đề
a) 6255 = (54)5 = 520
1257 = (53)7 = 521
Do: 20 < 21 => 520 < 521 hay 6255 < 1257
b) 536 = (53)12 = 12512
1124 = (112)12 = 12112
Do: 125 > 121 => 12512 > 12112 hay 536 > 1124
c) Mình nghĩ đề bài có chút trục trặc vì nếu đề đúng thì chẳng phải quá rõ ràng là 7 < 216 rồi hay sao. Bạn chịu khó kiểm tra lại đề nhé!
3452 và 342 x 428
342 x 428 = ( 342 + 3 ).( 348 - 3 ) = 345.345 = 3452
Vậy 3452 = 342 x 428
8742 và 870 x 878
870 x 878 = ( 870 + 4 ).( 878 - 4 ) = 874.874 = 8742
Vậy 8742 =870 x 878
536 và 1124
536 = ( 53)12 =12512
1124 = ( 112 )12 = 12112
Vì 125 > 121 nên 536 =1124
6255 và 1257
6255 = ( 54)5 = 520
1257 = ( 53)7 = 521
Vì 20 < 21 nên 6255 <1257
ai học THCS thì kb vs mình
so sánh
\(27^{11}\)và \(81^8\)
\(625^5\)và \(125^7\)
\(5^{23}\)và \(6.5^{22}\)
\(7.2^{13}\)và \(2^{16}\)
a) 2711 = ( 32 ) 11 = 32.11 = 322
818 = ( 34 ) 8 = 34.8 = 332
Vì 22 < 32 nên 322 < 332 hay 2711 < 818
b) 6255 = ( 54 ) 5 = 54.5 = 520
1257 = ( 53 ) 7 = 53.7 = 521
Vì 20 < 21 nên 520 < 521 hay 6255 < 1257
c) 523 = 522 . 5
6 . 522 giữ nguyên
Vì 5 < 6 nên 523 < 6 . 522
d) 7 . 213 giữ nguyên
216 = 213 . 23 = 213 . 8
Vì 7 < 8 nên 7 . 213 < 216
A,Ta có:2711=(33)11=333
818=(34)8=332
Vì 33>32=>333>332
hay 2711>818
Vậy 2711>818
B,Ta có:6255=(54)5=520
1257=(53)7=521
Vì 20<21=>520<521
hay 6255<1257
Vậy 6255<1257
C,Ta có:536=(53)12=12512
1124=(112)12=12112
Vì 125>121=>12512>12112
hay 536>1124
Vậy 536>1124
A. \(27^{11}=\left(3^3\right)^{11}=3^{3\cdot11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4\cdot8}=3^{32}\)
có \(3^{33}>3^{32}\)
\(\Rightarrow27^{11}>81^8\)
B \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)
có \(5^{20}< 5^{21}\)
\(\Rightarrow625^5< 125^7\)
6255 = (54)5 = 520
1257 = (53)7 = 521
\(\Rightarrow\) 6255 < 1257