Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013.2015}=4028+2\sqrt{2013.2015}\)
\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2\sqrt{2014^2}\)
Ta có: \(2013.2015=2014^2-1< 2014^2\)
Do đó \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)
\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)
Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :
\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)
\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)
\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)
\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)
=\(\sqrt{\left(5+2\sqrt{6}\right)+\left(2\sqrt{10}+2\sqrt{15}\right)+5}\)
=\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2+2\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{5}\right)^2}\)
=\(\sqrt{\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)^2}\)
=\(\sqrt{3}+\sqrt{2}+\sqrt{5}\)
\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)
\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)
\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)
Cứ nhân lần lược vào rồi rút gọn sẽ được như trên
\(\sqrt{50}+\sqrt{37}+\sqrt{101}>\sqrt{49}+\sqrt{100}+\sqrt{36}=7+6+10=23=\sqrt{529}\)
ĐKXĐ : \(x>0\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có
\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)
Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)
\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)
\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)
Vì \(x>0;x+4>4\)
\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)
⇒ Không có giá trị nhỏ nhất
a)
\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)
\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)
\(=10\sqrt{3}\)
b)
\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)
\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)
\(=-3\sqrt{5}:5\)
\(=\frac{-3\sqrt{5}}{5}\)
c)
\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)
\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)
\(=5\sqrt{3a}\)
ĐKXĐ:\(x>-3\)
\(\sqrt{x}+\sqrt{x+3}=x+4\)\(\Leftrightarrow x+x+3+2\sqrt{x}\sqrt{x+3}=\left(x+4\right)^2\)
\(\Leftrightarrow2x+3+2\sqrt{x^2+3x}=x^2+8x+16\)
\(\Leftrightarrow x^2+8x+16-2x-3-2\sqrt{x^2+3x}=0\)
\(\Leftrightarrow\left(x^2+3x-2\sqrt{x^2+3x}+1\right)+3x+12=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3x}-1\right)^2+3\left(x+4\right)=0\)
Ta thấy:\(\hept{\begin{cases}\left(\sqrt{x^2+3x}-1\right)^2\ge0\\x>-3\Leftrightarrow3\left(x+4\right)>0\end{cases}}\)
\(\Rightarrow\left(\sqrt{x^2+3x}-1\right)^2+3\left(x+4\right)>0\)
\(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
\(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2\)
\(\Rightarrow\sqrt{37}-\sqrt{15}>2\)
Ta có: \(\sqrt{37}>\sqrt{36}\)
\(-\sqrt{15}>-\sqrt{16}\)
Do đó: \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=2\)