Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có :\(2^{24}=\left(2^2\right)^{12}=4^{12}\)
\(3^{36}=\left(3^2\right)^{12}=9^{12}\)
Vì \(4^{12}< 9^{12}\left(4< 9\right)\)
Nên bạn tự kết luận
b) ta có : \(10^{20}=\left(10^2\right)^{10}=100^{10}\)
Vì \(100^{10}>90^{10}\left(100>90\right)\)
Nên bạn tự kết luận
c) ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\left(8< 9\right)\)
Nên bạn tự kết luận
224=(22)12=412
336=(33)12=2712
Tự so sánh nhé
phần sau tương tự
a) \(2^{91}\)và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
b) \(3^{4000}\)và \(9^{2000}\)
Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81^{1000}=81^{1000}\)nên \(3^{4000}=9^{2000}\)
\(2^{91}\)và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\)nên \(2^{91}>5^{35}\)
\(3^{4000}\)và \(9^{2000}\)
Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81=81\)nên \(3^{4000}=9^{2000}\)
2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 8111 < 9111
Vậy 2332 < 3223
\(2^{332}\) và \(3^{223}\)
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\) hay \(2^{332}< 8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\) hay \(3^{223}>9^{111}\)
Mà : \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 8^{111}< 9^{111}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà 8^75 < 9^75 => 2^225<3^150
b) Ta có
2^91=(2^13)^7=8192^7
3^35=(3^5)^7=243^7
mà 8192^7<243^7=> 2^91<3^35
c) 3^4000=(3^2)^2000=9^2000
d) 2^332 < 2^333=2^3^111=8^111
3^223>3^222=9^111
=>2^332<3^223
2|}}dasKJLFDJHLSKAfhsdklfjdlsa;fjdsafjdsa;fjdsl;fjlsa;fjadskljfdlfjdskfjl;+)2349890432483085439-
\(a,2^{24}\) và \(3^{36}.\)
Ta có:
\(2^{24}=2^{2.12}=\left(2^2\right)^{12}=4^{12}.\)
\(3^{36}=3^{3.12}=\left(3^3\right)^{12}=27^{12}.\)
Vì \(4^{12}< 27^{12}\left(4< 27\right)\Rightarrow2^{24}< 3^{36}.\)
Vậy.....
\(b,10^{20}\) và \(90^{10}.\)
Ta có:
\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}.\)
\(90^{10}=90^{10}.\)
Vì \(100^{10}>90^{10}\left(100>90\right)\Rightarrow10^{20}>90^{10}.\)
Vậy.....
\(c,2^{332}\) và \(3^{223}.\)
Ta có:
\(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}.\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}.\)
Vì \(8^{111}< 9^{111}\left(8< 9\right)\Rightarrow2^{332}< 3^{223}.\)
Vậy.....