K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{n}{n+3}-\dfrac{n-1}{n+4}\)

\(=\dfrac{n^2+4n-n^2-2n+3}{\left(n+4\right)\left(n+3\right)}=\dfrac{2n+3}{\left(n+4\right)\left(n+3\right)}>0\)

=>n/n+3>(n-1)/(n+4)

Ta có : \(\frac{n}{n+6}\)=\(1-\frac{6}{n+6}\)

           \(\frac{n+1}{n+7}\)=\(1-\frac{6}{n+7}\)

Vì \(\frac{6}{n+6}>\frac{6}{n+7}\)=> \(\frac{n}{n+6}< \frac{n+1}{n+7}\)Vì phần cần thêm vào càng lớn thì phần có sẵn càng nhỏ 

ủng hộ mik nhaaa

8 tháng 7 2017

Ta có:

\(1-\frac{n}{n+6}=\frac{n+6}{n+6}-\frac{n}{n+6}=\frac{6}{n+6}.\)

\(1-\frac{n+1}{n+7}=\frac{n+7}{n+7}-\frac{n+1}{n+7}=\frac{6}{n+7}.\)

Vì \(n+6< n+7\)nên \(\frac{6}{n+6}>\frac{6}{n+7}\Leftrightarrow1-\frac{6}{n+6}< 1-\frac{6}{n+7}\Leftrightarrow\frac{n}{n+6}< \frac{n+1}{n+7}\)

k với!!!!!!!!!!!!

26 tháng 6 2017

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

            \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

8 tháng 7 2017

Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

           \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)

Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)

Nên \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

a kiếm phân số trung gian để so sánh

26 tháng 9 2017

Ta so sánh hai phân số \(A=\frac{n}{n+3}\) và \(B=\frac{n-1}{n+4}\)

Ta thấy \(A+1=\frac{n}{n+3}+1=\frac{n}{n+3}+\frac{n+3}{n+3}=\frac{n+n+3}{n+3}=\frac{2n+3}{n+3}\)\(B+1=\frac{n-1}{n+4}+1=\frac{n-1}{n+4}+\frac{n+4}{n+4}=\frac{n-1+n+4}{n+4}=\frac{2n+3}{n+4}\)

Ta thấy \(2n+3=2n+3;n+3< n+4\Rightarrow\frac{2n+3}{n+3}>\frac{2n+3}{n+4}\Rightarrow A+1>B+1\Rightarrow A>B\)

Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}.\)

22 tháng 11 2017

cảm ơn Hoàng Thị Thu Huyền

AH
Akai Haruma
Giáo viên
27 tháng 10 2023

Lời giải:

$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$

$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$

Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$

Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$

Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$

-------------------------

$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$

$<1-\frac{n+3}=\frac{n}{n+3}$

2 tháng 4 2022

Thiếu đề hay xao ý bn

2 tháng 4 2022

thiếu j bạn, > nhé

10 tháng 8 2016

có : n+2/n+3 - n+1/n+2= ((n+2) x (n+2) -  (n+1) x (n+3))/(n+2)x(n+3)=1/(n+2)x(n+3) > 0

suy ra n+1/n+2 < n+2/ n+3

ví dụ: 1/2 < 2/3