Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^{2017}}{10^{2018+1}}=\frac{10^{2017}}{10^{2019}}=\frac{1}{10^2}\)
Tương Tự với \(B=\frac{1}{10^2}\)
\(\Rightarrow A=B\)
\(A=\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}\)
\(A=\frac{10^{2016}+1+9}{10^{2016}+1}=\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)
\(B=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10.\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)
\(B=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
Vì 102016+1 < 102017+1
=>\(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)
=>\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)
=>10A > 10B
=>A > B
\(B=\frac{10^{2016}+1}{10^{2017}+1}<\frac{10^{2016}+1+9}{10^{2017}+1+9}\)
\(=\frac{10^{2016}+10}{10^{2017}+10}\)
\(=\frac{10.\left(10^{2015}+1\right)}{10.\left(10^{2016}+1\right)}\)
\(=\frac{10^{2015}+1}{10^{2016}+1}=A\)
\(\Rightarrow\) B<A
vi ve A va ve B deu co (-12)/10^2017 nen ta chi viec so sanh (-21)/10^2017 voi (-12)/10^2017.Ma (-21)/10^2017<(-12)/10^2016 nen A < B
\(A=\frac{10^{2016}+1}{10^{2017}+1}\)
\(A=\frac{10^{2016}+1}{10^{2017}+1}+\frac{10^{2017}+1}{10^{2017}+1}\)
\(A=\frac{10^{2016}+1+10^{2017}+1}{10^{2017}+1}\)
\(A=\frac{10^{2016}+10^{2017}+1+1}{10^{2016}.10+1}\)
\(A=\frac{10^{2016}.\left(1+10\right)+2}{10^{2016}.10+1}\)
\(A=\frac{10^{2016}.11+2}{10^{2016}.10+1}\)
\(A=\frac{11+2}{10+1}\)
\(A=\frac{13}{11}\)(1)
Làm tương tự phần B
Từ 1 và 2
\(\Leftrightarrow\)\(\frac{13}{11}=\frac{13}{11}\)
\(\Leftrightarrow\)A = B