Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
vÌ \(\frac{2}{20^{10}-3}>\frac{2}{20^{10}-1};1=1\Rightarrow1+\frac{2}{20^{10}-3}>1+\frac{2}{20^{10}-1}\Rightarrow A>B\)
Ta có: B > 1
=> B = \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}=A\)
Vậy A < B
\(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Nhận thấy: \(\frac{2}{2^{10}-3}>\frac{2}{2^{10}-1}\) do 210-3 < 210-1
Vậy: \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}+1}{2^{10}-1}\)
TC:
10A = \(\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}< 1\)
10B = \(\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
VÌ \(1-\frac{9}{10^{12}-1}< 1\)VÀ \(1+\frac{9}{10^{11}+1}>1\) nên \(1+\frac{9}{10^{11}+1}\)\(>\)\(1-\frac{9}{10^{12}-1}\)
\(=>\)\(10A< 10B\)
\(=>A< B\)
Vậy \(A< B\)
Theo đề ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(=>\frac{10^{11}-1}{10.10^{11}-1}\)
\(=>1+\frac{1}{10}\)
\(=>A>1\)
\(B=\frac{10^{10}-1}{10^{11}-1}\)
\(=>\frac{10^{10}-1}{10.10^{10}-1}\)
\(=>1+\frac{1}{10}\)
\(=>B>1\)
Mà B > 1 ; A > 1 và \(\frac{1}{10}=\frac{1}{10}\)
\(=>A=B\)
_Hok tốt_