K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

\(A=B\)

vì tổng của A = 31 

và hiệu của B = 31 

=> A=B

24 tháng 8 2018

Ta có \(A=1+2^2+2^3+2^4+2^5\)

Suy ra \(2A=2+2^3+2^4+2^5+2^6\)

Nên \(2A-A=A=2^6-1\)

tA có \(2^6-1>2^5-1\)

Khi đó A > B

Vậy A > B

13 tháng 7 2016

A=1+2+22+23+24=1+2+4+8+16=31

B=25-1=32-1=31

=>A=B=31

12 tháng 5 2021

Tính nhanh 5/8+5/24+5/48+......+5/9800

3 tháng 4 2024

1 tháng 7 2015

\(A=2^0+2^1+...+2^4\)

\(\Rightarrow2A=2^1+2^2+...+2^5\)

\(\Rightarrow2A-A=2^5-2^0=2^5-1=B\)

                Vậy A = B

13 tháng 12 2015

a) Xin lỗi bạn nhé !!!

 b) 2010^2 và 2009.2011 
<=> (2009+1).2010 và 2009.(2010+1) 
<=> 2009.2010+2010 > 2009.2010+2009 

=> 2010^2 > 2009 . 2011

c) 

\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\)

Nên \(3^{450}>5^{300}\)

13 tháng 12 2015

a) A = 2 + 22 + ... + 22010

       = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

       = 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)

       = 2.3 + 23.3 + ... + 22009.3 chia hết cho 3

   A = 2 + 22 + ... + 22010

      = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

      = 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)

      = 2.7 + 24.7 + ... + 22008.7 chia hết cho 7

b) Xét A = 2009.2011

             = (2010-1) . (2010+1)

             = 2010.2010 + 1.2010 - 1.2010 - 1.1

             = 2010.2010 - 1

          B = A - 1

Vậy B < A

c) Ta có : 3450 = 35.90 = 1590

                   5300 = 53.100 = 15100

Vì 1590 < 15100 nên 3450 < 5300 hay A < B

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$

$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$

$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$

$\Rightarrow A=1-\frac{1}{2^{2021}}

$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$

Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$

$\Rightarrow A> B$