Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1/11+1/12+1/13+...+1/30
=(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)
\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)
\(\Rightarrow\)A<(1/10)*10+(1/20)*10
\(\Rightarrow\)A<1+1/2
\(\Rightarrow\)A<3/2<11/6
\(15.8-\left(17-30+83\right)-144:6\)
\(=15.8-70-144:6\)
\(=120-70-24\)
\(=50-24\)
\(=26\)
Bài 1:
a) 3500 = 3100.5 = (35)100 = 243100
5300 = 5100.3 = (53)100 = 125100
Vì 243100 > 125100 nên 3500 > 5300
b) Không thể biết, nếu n > 100 thì thừa lớn hơn, nếu n < 9 thì thừa bé hơn.
\(\Rightarrow\)x+2\(\in\)Ư(9)
Ư(9)={\(\pm1\); \(\pm3\); \(\pm9\)}
\(\Rightarrow\)x+2\(\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow\)x\(\in\left\{\pm1;-3;-5;-11;7\right\}\)
Vậy x\(\in\left\{\pm1;-3;-5;-11;7\right\}\)
- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại
- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)
Nếu p>3 , p nguyên tố => p có dạng 3k+1 hoặc 3k+2 (k nguyen dương)
- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại
- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại
=> với mọi p>3 đều không thỏa mãn
Vậy p=3 là giá trị thỏa mãn cần tìm
Ta có 2^30 x 9^15 = 2^30 x (3^2)^15
= 2^30 x 3^ 30
= (2x3)^ 30
= 6^30
Vậy 6^30 = 2^30 x 9^15