Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ S.Sánh: \(\dfrac{-325}{1994};\dfrac{-324}{1993};\dfrac{-325}{1995}\)
Ta có: \(\dfrac{-325}{1994}< \dfrac{-325}{1995}\)\(< \) \(\dfrac{-324}{1993}\)(chỗ này mk chưa thể làm cách nhanh nhất cho bn)
Lưu ý: Hai p/ số có mẫu âm bằng nhau, p/ số nào có mẫu lớn hơn thì lớn hơn, còn mẫu dương thì ngược lại.
Lời giải:
\((\sqrt{1993}+\sqrt{1995})^2=1993+1995+2.\sqrt{1993.1995}=3988+2\sqrt{(1994-1)(1994+1)}\)
\(=3988+2\sqrt{1994^2-1}< 3988+2\sqrt{1994^2}=3988+2.1994=7976\)
\(\Rightarrow \sqrt{1993}+\sqrt{1995}< \sqrt{7976}\) hay $\sqrt{1993}+\sqrt{1995}< 2\sqrt{1994}$
Này Akai Haruma, mk vẫn ko hiểu bài này lắm, bn có thể giải lại 1 cách rõ ràng hơn cho mk hiểu đc ko, mk chép nhưng cũng cần phải hiểu bài nếu ko cô mk hỏi thì chết???
\(A=\dfrac{1}{\left(-1997\right)\left(-1995\right)}+...+\dfrac{1}{\left(-3\right)\left(-1\right)}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{1995.1997}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{1995.1997}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{1995}-\dfrac{1}{1997}\right)\)
\(=\dfrac{1}{2}.\dfrac{1996}{1997}=\dfrac{998}{1997}\)
Ta thấy: \(\frac{-325}{1995}< \frac{-324}{1995}< \frac{-324}{1993}\)
=> \(\frac{-325}{1995}< \frac{-324}{1993}\)