K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

\((\sqrt{1993}+\sqrt{1995})^2=1993+1995+2.\sqrt{1993.1995}=3988+2\sqrt{(1994-1)(1994+1)}\)

\(=3988+2\sqrt{1994^2-1}< 3988+2\sqrt{1994^2}=3988+2.1994=7976\)

\(\Rightarrow \sqrt{1993}+\sqrt{1995}< \sqrt{7976}\) hay $\sqrt{1993}+\sqrt{1995}< 2\sqrt{1994}$

12 tháng 1 2020

Này Akai Haruma, mk vẫn ko hiểu bài này lắm, bn có thể giải lại 1 cách rõ ràng hơn cho mk hiểu đc ko, mk chép nhưng cũng cần phải hiểu bài nếu ko cô mk hỏi thì chết???leuleu

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

20 tháng 10 2017

a/ \(\sqrt{10}< \sqrt{16}=4\)

b/ \(\sqrt{40}>\sqrt{36}=4\)

c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)

d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)

20 tháng 10 2017


a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)
 

6 tháng 11 2017

tính bình thường thôi

29 tháng 10 2017

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B

24 tháng 5 2016

\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)

\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)

Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)

Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)