Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇔10A=102005+110(102004+1)
⇒10�=102005+10102005+1⇒10A=102005+1102005+10
10�=102005+1+9102005+1=102005+1102005+1+9102005+110A=102005+1102005+1+9=102005+1102005+1+102005+19
10�=1+9102005+110A=1+102005+19
tương tự như trên ta có :
10�=1+9102006+110B=1+102006+19
ta thấy:102005+1<102006+1
⇒9102005+1>9102006+1⇒102005+19>102006+19
⇒1+9102005+1>1+9102006+1⇒1+102005+19>1+102006+19
=>10A>10B
=>A>B
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
Bài giải
\(S=1+2+2^2+...+2^{2005}\)
\(2S=2+2^2+2^3+...+2^{2006}\)
\(2S-S=S=2^{2006}-1=2^{2004}\cdot4-1< 5\cdot2^{2004}\)
\(\Rightarrow\text{ }S< 5\cdot2^{2004}\)
b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(B=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Ta có:\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}\)
\(\Rightarrow A=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}\)
\(\Rightarrow A=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}\)
\(\Rightarrow B=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\Rightarrow A>B\)
200410+200410>200510