K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

CR:

8-4=4(cm)

TT:

8x4x8=256(cm3)

Đ/S:256cm3

6 tháng 4 2020

Ta có: a-1/a = a/a - 1/a = 1 - 1/a < 1

           b+1/b = b/b + 1/b = 1 + 1/b > 1

      => a-1/a < 1 < b+1/b

   Vậỵ a-1/a < b+1/b

25 tháng 8 2018

ta có: \(a.\left(b+n\right)=ab+an;b.\left(a+n\right)=ba+bn\)

nếu a < b

=> ab + an < ba + bn

=> a.(b+n) < b.(a+n)

\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)

nếu a = b

...

---> a/b = a+n/b+n

nếu a > b

...

----> a/b > a+n/b+n

25 tháng 8 2018

Theo mk thì \(a,b,n\in N\)

Xét hiệu:

\(\frac{a}{b}-\frac{a+n}{b+n}=\frac{a.\left(b+n\right)-\left(a+n\right).b}{b.\left(b+n\right)}=\frac{an-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b.\left(b+n\right)}\)

Với \(a=b\Rightarrow a-b=0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}=0\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)

Với \(a>b\Rightarrow a-b>0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)

Với \(a< b\Rightarrow a-b< 0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)

Vậy \(\frac{a}{b}=\frac{a+n}{b+n}\Leftrightarrow a=b\)

      \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

      \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Tham khảo nhé~

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

17 tháng 6 2021

Ta có: \(\frac{a-1}{a}=1-\frac{1}{a};\frac{b+1}{b}=1+\frac{1}{b}\)

\(a;b>0\Rightarrow\frac{1}{a};\frac{1}{b}>0\Rightarrow1-\frac{1}{a}< 1+\frac{1}{b}hay\frac{a-1}{a}< \frac{b+1}{b}\)

\(a;b< 0\Rightarrow\frac{1}{a};\frac{1}{b}< 0\Rightarrow1-\frac{1}{a}>1+\frac{1}{b}hay\frac{a-1}{a}>\frac{b+1}{b}\)

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

3 tháng 3 2020

Câu này đã có trong câu hỏi tương tự hoặc banjc so thể vào Toán vui hằng tuần, đã có bài toán này rồi nhé !

3 tháng 3 2020

https://olm.vn/hoi-dap/detail/7521148738.html bạn tham khảo nha

5 tháng 3 2019

19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010

19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009

Vậy A<B

Xin lỗi mình chịu câu trên

5 tháng 3 2019

Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\)                                    Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)

                                                                               19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+19}{19^{2010}+1}\)                                       19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\)                                19B=\(1+\frac{18}{19^{2009}+1}\)

      19A=\(1+\frac{18}{19^{2010}+1}\)

                         Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)

                          \(\Leftrightarrow A< B\)

                            Vậy\(A< B\)

25 tháng 2 2018

a. Ta có

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)

\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)

\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)

Cộng vế với vế của 1;2 ta được

\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)

hay A>B

Làm ơn giúp mk, mk đang cần gấp!!!