Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
a. Ta có
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)
Vì\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)
\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)
Cộng vế với vế của 1;2 ta được
\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)
hay A>B
a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)
A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }
b) Thiếu điều kiện n là số nguyên dương.
Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)
\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
TH1: b > a
=> b - a > 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
TH2: b < a
=> b - a < 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)
=> \(\frac{a+n}{b+n}< \frac{a}{b}\)
TH1: b = a
=> b - a = 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)
=> \(\frac{a+n}{b+n}=\frac{a}{b}\)
Kết luận:...
a)Để A nguyên thì (3n+2)chia hết cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}
b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh
Để A có giá trị là một số nguyên thì \(3n+2⋮n\)
\(\Rightarrow3n+2⋮3n\Rightarrow2⋮n\)
\(\Rightarrow n\inƯ\left(2\right)=\left\{-1;1;2;-2\right\}\)
Vậy để A có giá trị nguyên thì \(n\in\left\{-1;1;2;-2\right\}\)
a ) Nếu \(\frac{a}{b}>\frac{a+m}{b+m}\)
\(\Leftrightarrow a\left(b+m\right)>b\left(a+m\right)\)
\(\Leftrightarrow ab+am>ab+bm\)
\(\Leftrightarrow am>bm\)
\(\Rightarrow a>b\)
\(\Rightarrow\frac{a}{b}>1\)
Vậy \(\frac{a}{b}>1\) thì \(\frac{a}{b}>\frac{a+m}{b+m}\)
b ) Vì 237 > 142 => \(\frac{237}{142}>\frac{237+9}{142+9}=\frac{246}{151}\)
Xét hiệu :
\(\frac{a}{b}-\frac{a+m}{b+m}\)
\(=\frac{a\left(b+m\right)}{b\left(b+m\right)}-\frac{\left(a+m\right)b}{\left(b+m\right)b}\)
\(=\frac{a.b+a.m}{b\left(b+m\right)}-\frac{a.b+b.m}{b\left(b+m\right)}\)
\(=\frac{a.b+a.m-a.b+b.m}{b\left(b+m\right)}\)
\(=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)
Vì \(\frac{a}{b}>1,b\in\)N* \(\Rightarrow a>b\Rightarrow a-b>0,m\in\)N*
\(\Rightarrow m\left(a-b\right)>0\); Vì : \(b,m\in\)N* \(\Rightarrow b\left(b+m\right)>0\)
\(\Rightarrow\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\) hay : \(\frac{a}{b}-\frac{a+m}{b+m}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Vậy \(\frac{a}{b}>1,m\in\)N* thì \(\frac{a}{b}>\frac{a+m}{b+m}\)
b, Tự làm
Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn
a\()\)\(\frac{a}{-b}\)và \(\frac{-a}{b}\)
Ta có : \((-a)(-b)=a\cdot b\)
Do đó : \(\frac{a}{-b}=\frac{-a}{b}(\)theo định nghĩa SGK\()\)
Bài b tương tự
ta có: \(a.\left(b+n\right)=ab+an;b.\left(a+n\right)=ba+bn\)
nếu a < b
=> ab + an < ba + bn
=> a.(b+n) < b.(a+n)
\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
nếu a = b
...
---> a/b = a+n/b+n
nếu a > b
...
----> a/b > a+n/b+n
Theo mk thì \(a,b,n\in N\)
Xét hiệu:
\(\frac{a}{b}-\frac{a+n}{b+n}=\frac{a.\left(b+n\right)-\left(a+n\right).b}{b.\left(b+n\right)}=\frac{an-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b.\left(b+n\right)}\)
Với \(a=b\Rightarrow a-b=0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}=0\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)
Với \(a>b\Rightarrow a-b>0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)
Với \(a< b\Rightarrow a-b< 0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
Vậy \(\frac{a}{b}=\frac{a+n}{b+n}\Leftrightarrow a=b\)
\(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)
\(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Tham khảo nhé~