Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
\(A>10.\frac{1}{20}+10.\frac{1}{30}\)
\(A>\frac{1}{2}+\frac{1}{3}\)
\(A>\frac{5}{6}\)
Vậy \(A>\frac{5}{6}\)
Chúc bạn học tốt ~
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
\(A>\frac{1}{20}\times10+\frac{1}{30}\times10\)
\(A>\frac{1}{2}+\frac{1}{3}\)
\(A>\frac{5}{6}\)
Vậy \(A>\frac{5}{6}\)
Mỗi phân số \(\frac{1}{11},\frac{1}{12},\frac{1}{13},...,\frac{1}{19}\)đều lớn hơn \(\frac{1}{20}\)
Do đó,\(S>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}(\)10 dãy \()\)
\(\Rightarrow S>\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(⋮\)
\(\frac{1}{20}=\frac{1}{20}\)
Suy ra \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(có 10 số \(\frac{1}{20}\))
A= 1/10+1/11+1/12+1/13+...........+1/99+1/100
2A=1/9+1/10+1/11+1/12+...........+1/98+1/99
2A-A=(1/10+1/11+1/12+1/13+.............+1/99+1/100)-(1/9+1/10+1/11+1/12+............1/98+1/99)
A=1/100-1/9
a/2987.(-1974).(+232).0= 0
=> 2987.(-1974).(+243).0 = 0
b/ (-12).(-45):(-27) =-20
I-1I=1
=>(-12).(-45):(-27)<I-1I
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
1 cặp có giá trị là:
\(\frac{1}{11}\)+\(\frac{1}{25}\)=\(\frac{36}{275}\)
Có các phân số là;
(25-11):1+1=15(phân số)
Có các cặp là :
15 :2=7(CẶP ,DƯ 1 CẶP)
1 CẶP DƯ ĐÓ LÀ:
\(\frac{36}{275}\):2=\(\frac{36}{550}\)=\(\frac{18}{275}\)
Các cặp có tổng là:
\(\frac{36}{275}\).7=\(\frac{252}{275}\)
Tổng số đó là:
\(\frac{252}{275}\)+\(\frac{18}{275}\)=\(\frac{270}{275}\)=\(\frac{54}{55}\)
Phân số \(\frac{54}{55}\)lớn hơn phân số \(\frac{47}{60}\)vì
\(\frac{54}{55}\)và \(\frac{47}{60}\)=\(\frac{3240}{3300}\)và \(\frac{2585}{3300}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}\)
\(=\left(\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}\right)\)
\(\frac{1}{11}+\frac{1}{12}>\frac{1}{12}+\frac{1}{12}=\frac{2}{12}=\frac{10}{60}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{15}+\frac{1}{15}+\frac{1}{15}=\frac{3}{15}=\frac{12}{60}\)
\(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}=\frac{5}{20}=\frac{15}{60}\)
\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}>\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}=\frac{5}{25}=\frac{1}{5}=\frac{12}{60}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}>\frac{10}{60}+\frac{12}{60}+\frac{15}{60}+\frac{12}{60}=\frac{49}{60}\)
Mà \(\frac{49}{60}>\frac{47}{60}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}>\frac{47}{60}\left(đpcm\right)\)