Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)
\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)
\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)
\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)
\(A< \frac{1}{2}\)
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}\)
\(=>A>\frac{65}{132}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)\(+\)\(\frac{1}{10}\)\(-\)\(\frac{1}{11}\)\(+\)\(\frac{1}{11}\)\(-\)\(\frac{1}{12}\)\(+\)\(\frac{1}{12}\)\(-\)\(\frac{1}{13}\)\(+\)\(\frac{1}{13}\)\(-\)\(\frac{1}{14}\)\(+\)\(\frac{1}{14}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{2}{45}\)
\(A=\left(\frac{1}{9}.\frac{1}{10}+\frac{1}{10}.\frac{1}{11}\right)+\left(\frac{1}{11}.\frac{1}{12}+\frac{1}{12}.\frac{1}{13}\right)+\left(\frac{1}{13}.\frac{1}{14}+\frac{1}{14}.\frac{1}{15}\right)\)
Sau đó nhân phân phối ra là xong nhé bạn
ta có : \(\frac{1}{10}>\frac{1}{100}\)
\(\frac{1}{11}>\frac{1}{100}\)
\(\frac{1}{12}>\frac{1}{100}\)
\(..............\)
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
cộng vế với vế ta được :
\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{91}{100}>1\)
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\).
A= 1/10+1/11+1/12+1/13+...........+1/99+1/100
2A=1/9+1/10+1/11+1/12+...........+1/98+1/99
2A-A=(1/10+1/11+1/12+1/13+.............+1/99+1/100)-(1/9+1/10+1/11+1/12+............1/98+1/99)
A=1/100-1/9
=>A<1