Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=\frac{x^4+x^3+x^2+x-29}{x^2+1}=x^2+x-\frac{29}{x^2+1}\)
Để H nguyên thì \(x^2+1\)phải là ước nguyên dương của 29 hay
\(\left(x^2+1\right)=\left(1;29\right)\)
\(\Rightarrow x=0\)
a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)
\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)
\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên
=> \(x-5⋮\)x+5
Ta có x-5=(x+5)-10
Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)
mà x nguyên => x+5 nguyên
=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
ta có bảng
x+5 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -15 | -10 | -7 | -6 | -4 | -3 | 0 | 5 |
ĐCĐK | tm | tm | tm | tm | tm | tm | tm | ktm |
Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên
a) Phân thức nguyên
<=> \(\sqrt{x}+1\)\(⋮\) \(2\sqrt{x}-3\)
<=> \(2\sqrt{x}+2\) \(⋮\) \(2\sqrt{x}-3\)
<=> \(2\sqrt{x}-3+5\) \(⋮\) \(2\sqrt{x}-3\)
<=> \(5\) \(⋮\) \(2\sqrt{x}-3\)
<=> \(2\sqrt{x}-3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng sau :
\(2\sqrt{x}-3\) | 1 | -1 | 5 | -5 |
x | 4 | 1 | 16 | !!! |
b) Có :
\(\frac{x+2007}{x}=1+\frac{2007}{x}\)
Phân thức nguyên
<=> \(x\inƯ\left(2007\right)\)
Nếu trắc nghiệm thì thế số vô là mau nhất:bằng 0 nhé
chon trắc nghiệm nhé:1,2,0,4,7