Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{b}{c}=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow P=1+1+1=3\)
A xp=x+x2+x^3+x^4+..................+x^2016
=>xp-p= x^2016-1 ban nhe
B ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3
a/ \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)
b/
\(20162016^{10}=\left(2016.10001\right)^{10}=2016^{10}10001^{10}\)
\(2016^{20}=2016^{10}.2016^{10}\)
\(10001^{10}>2016^{10}\Rightarrow2016^{10}.10001^{10}>2016^{10}.2016^{10}\Rightarrow20162016^{10}>2016^{20}\)
c/ \(\frac{222^{333}}{333^{222}}=\frac{\left(222^3\right)^{111}}{\left(333^2\right)^{111}}=\frac{\left(2^3.111^3\right)^{111}}{\left(3^2.111^2\right)^{111}}=\left(\frac{8.111}{9}\right)^{111}\)
\(\frac{888}{9}>1\Rightarrow\left(\frac{888}{9}\right)^{111}>1\Rightarrow222^{333}>333^{222}\)
a) Ta có: 3^150 = 3^2.75 = (3^2)^75 = 9^75
2^225 = 2^3.75 = (2^3)^75 = 8^75
Vì 9 > 8 nên 9^75 > 8^75
Vậy 3^150 > 2^225
b) Ta có: 2016^20 = 2016^10+10 = 2016^10 . 2016^10
20162016^10 = (10001 . 2016)^10 = 10001^10 . 2016^10
Vì 2016^10 < 10001^10 nên 2016^10 . 2016^10 < 10001^10 . 2016^10
Vậy 2016^20 < 20162016^10
b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)
2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)
Từ (1) và (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)
=>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)
Ta có:43 \(\equiv\)1 (mod 7)
=>(43)1111\(\equiv\)11111 (mod 7)
=>43333\(\equiv\)1 (mod 7)
=>-43333\(\equiv\)-1(mod 7)
=>1-43333\(\equiv\)0 (mod 7)
=> 55552222+22225555\(\equiv\)0 (mod 7)
Vậy 55552222+22225555\(⋮\)7
Từ ac = b2 (1) => abc = b3
ab = c2 => abc = c3
=> b3 = c3 => b = c thay vào (1)
=> ab = b2 <=> (a - b).b = 0 <=> \(\orbr{\begin{cases}a=b\\b=0\left(loại\right)\end{cases}}\)
=> a = b = c
Khi đó: P = \(\frac{a^{555}}{a^{222}.a^{333}}+\frac{b^{555}}{b^{222}.b^{333}}+\frac{c^{555}}{c^{222}.c^{333}}=1+1+1=3\)