Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (0.8)^5=(0.4x2)^5=0.4^5x2^5
0.4^6=0.4^5x0.4
Suy ra:0.8^5/0.4^6=0.4^5x2^5/0.4^5x0.4=2^5/0.4=32/0.4=80
f) \(\frac{25^2.20^4}{5^{10}.4^5}=\frac{\left(5^2\right)^2.\left(4.5\right)^4}{5^{10}.4^5}=\frac{5^4.5^4.4^4}{5^{10}.4^5}=\frac{5^8.4^4}{5^{10}.4^5}=\frac{1}{5^2.4}=\frac{1}{100}\)
g) \(\frac{16^{12}.8}{32^5.64^4}=\frac{\left(2^4\right)^{12}.2^3}{\left(2^5\right)^5.\left(2^6\right)^4}=\frac{2^{48}.2^3}{2^{25}.2^{24}}=\frac{2^{51}}{2^{49}}=2^2=4\)
h) \(\frac{2^{18}.9^4}{6^6.8^4}=\frac{2^{18}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^4}=\frac{2^{18}.3^8}{2^6.3^6.2^{12}}=\frac{2^{18}.3^8}{2^{18}.3^6}=3^2=9\)
c: \(C=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\dfrac{9^3}{4^3}:\dfrac{3^3}{16^3}}{2^7\cdot5^2+2^9}=\dfrac{1+1728}{3712}=\dfrac{1729}{3712}\)
\(D=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\dfrac{3^5-3^4}{3^6+3^5}=\dfrac{3^4\left(3-1\right)}{3^5\left(3+1\right)}=\dfrac{2}{3\cdot4}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(E=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}=\dfrac{5^{10}\cdot7^3\cdot\left(-6\right)}{5^9\cdot7^3\cdot9}=5\cdot\dfrac{-2}{3}=\dfrac{-10}{3}\)
Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)
\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
3,
a) (−23+37):45+(−13+47):45
= \(-\frac{5}{21}:\frac{4}{5}+\frac{5}{21}:\frac{4}{5}\)
= \(\left(-\frac{5}{21}+\frac{5}{21}\right):\frac{4}{5}\)
= \(0:\frac{4}{5}=0\)
2,
a) \(\frac{-3}{4}\).\(\frac{12}{-5}\).(\(\frac{-25}{6}\))
= \(\frac{-3.4.3.\left(-5\right).5}{4.\left(-5\right).3.3}\)
= \(-5\)
b) (−2).\(\frac{-38}{21}\).\(\frac{-7}{4}\).(\(\frac{-3}{8}\))
= \(\frac{-2.\left(-38\right)\left(-7\right)\left(-3\right)}{\left(-7\right)\left(-3\right)\left(-2\right)\left(-2\right).8}\)
= \(\frac{19}{8}\)
c) (\(\frac{11}{12}:\frac{33}{16}\)).\(\frac{3}{5}\)
= \(\left(\frac{11}{12}.\frac{16}{33}\right).\frac{3}{5}\)
= \(\frac{4}{9}.\frac{3}{5}\)
= \(\frac{4}{15}\)
d) \(\frac{7}{23}\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-41}{10}\right)\)
= \(\frac{-287}{203}\)
3. Tính:
a) (\(\frac{-2}{3}+\frac{3}{7}\)):\(\frac{4}{5}\)+(\(\frac{-1}{3}+\frac{4}{7}\)):\(\frac{4}{5}\)
= (\(\frac{-2}{3}+\frac{3}{7}\)\(+\)\(\frac{-1}{3}+\frac{4}{7}\)) : \(\frac{4}{5}\)
= 0 : \(\frac{4}{5}\)
= 0
b) \(\frac{5}{9}\):(\(\frac{1}{11}-\frac{5}{22}\))+\(\frac{5}{9}\):(\(\frac{1}{15}-\frac{2}{3}\))
= \(\frac{5}{9}\): \(\frac{-3}{22}\)+ \(\frac{5}{9}\): \(\frac{-3}{5}\)
= \(\frac{5}{9}\): \(\frac{-81}{110}\)
= \(\frac{-550}{729}\)
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2
g) \(\frac{16^{12}.8}{32^5.64^4}=\frac{\left(2^4\right)^{12}.2^3}{\left(2^5\right)^5.\left(2^6\right)^4}=\frac{2^{48}.2^3}{2^{25}.2^{24}}=\frac{2^{51}}{2^{49}}=2^2=4\)
k) \(\frac{\left(0,8\right)^4}{\left(0,4\right)^5}=\frac{\left(0,4.2\right)^4}{\left(0,4\right)^5}=\frac{\left(0,4\right)^4.2^4}{\left(0,4\right)^5}=\frac{2^4}{0,4}=40\)