Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) \(\frac{16^{12}.8}{32^5.64^4}=\frac{\left(2^4\right)^{12}.2^3}{\left(2^5\right)^5.\left(2^6\right)^4}=\frac{2^{48}.2^3}{2^{25}.2^{24}}=\frac{2^{51}}{2^{49}}=2^2=4\)
k) \(\frac{\left(0,8\right)^4}{\left(0,4\right)^5}=\frac{\left(0,4.2\right)^4}{\left(0,4\right)^5}=\frac{\left(0,4\right)^4.2^4}{\left(0,4\right)^5}=\frac{2^4}{0,4}=40\)
f) \(\frac{25^2.20^4}{5^{10}.4^5}=\frac{\left(5^2\right)^5.\left(4.5\right)^4}{5^{10}.4^5}=\frac{5^{10}.5^4.4^4}{5^{10}.4^5}=\frac{5^{14}.4^4}{5^{10}.4^5}=\frac{5^4}{4}\)
i) \(\frac{9^{15}.81^4}{27^8.3^{20}}=\frac{\left(3^2\right)^{15}.\left(3^4\right)^4}{\left(3^3\right)^8.3^{20}}=\frac{3^{30}.3^{16}}{3^{24}.3^{20}}=\frac{3^{46}}{3^{44}}=3^2=9\)
f) Ta có: \(\frac{25^2.20^4}{5^{10}.4^5}\)= \(\frac{\left(5^2\right)^2.\left(4.5\right)^4}{5^{10}.4^5}\)= \(\frac{5^4.4^4.5^4}{5^{10}.4^5}\)= \(\frac{5^8.4^4}{5^{10}.4^5}\)= \(\frac{1}{5^2.4}\)=\(\frac{1}{100}\).
i) Ta có: \(\frac{9^{15}.81^4}{27^8.3^{20}}\)= \(\frac{\left(3^2\right)^{15}.\left(3^4\right)^4}{\left(3^3\right)^8.3^{20}}\)= \(\frac{3^{30}.3^8}{3^{24}.3^{20}}\)= \(\frac{3^{38}}{3^{44}}\)=\(\frac{1}{3^6}\)= \(\frac{1}{729}\)
b) \(\frac{36^7}{2^{15}.27^5}=\frac{\left(2^2.3^2\right)^7}{2^{15}.\left(3^3\right)^5}=\frac{2^{14}.3^{14}}{2^{15}.3^{15}}=\frac{1.1}{2.3}=\frac{1}{6}\)
h) \(\frac{2^{18}.9^4}{6^6.8^4}=\frac{2^{18}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^4}=\frac{2^{18}.3^8}{2^6.3^6.2^{12}}=\frac{2^{18}.3^8}{2^{18}.3^6}=\frac{1.3^2}{1.1}=9\)
o) \(\frac{3^3+3.6^2+6^3}{13}=\frac{3^3+6^2\left(3+6\right)}{13}=\frac{3^3+6^2.3^2}{13}\)
\(=\frac{3^2\left(3+6^2\right)}{13}=\frac{9.3.13}{13}=\frac{9.3.1}{1}=27\)
c: \(C=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\dfrac{9^3}{4^3}:\dfrac{3^3}{16^3}}{2^7\cdot5^2+2^9}=\dfrac{1+1728}{3712}=\dfrac{1729}{3712}\)
\(D=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\dfrac{3^5-3^4}{3^6+3^5}=\dfrac{3^4\left(3-1\right)}{3^5\left(3+1\right)}=\dfrac{2}{3\cdot4}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(E=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}=\dfrac{5^{10}\cdot7^3\cdot\left(-6\right)}{5^9\cdot7^3\cdot9}=5\cdot\dfrac{-2}{3}=\dfrac{-10}{3}\)
f) \(\frac{25^2.20^4}{5^{10}.4^5}=\frac{\left(5^2\right)^2.\left(4.5\right)^4}{5^{10}.4^5}=\frac{5^4.5^4.4^4}{5^{10}.4^5}=\frac{5^8.4^4}{5^{10}.4^5}=\frac{1}{5^2.4}=\frac{1}{100}\)
g) \(\frac{16^{12}.8}{32^5.64^4}=\frac{\left(2^4\right)^{12}.2^3}{\left(2^5\right)^5.\left(2^6\right)^4}=\frac{2^{48}.2^3}{2^{25}.2^{24}}=\frac{2^{51}}{2^{49}}=2^2=4\)
h) \(\frac{2^{18}.9^4}{6^6.8^4}=\frac{2^{18}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^4}=\frac{2^{18}.3^8}{2^6.3^6.2^{12}}=\frac{2^{18}.3^8}{2^{18}.3^6}=3^2=9\)