K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 7 2021

\(A=\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=\sqrt{3+\sqrt{4-2\sqrt{3}}}=\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}=\dfrac{1}{\sqrt{2}}\sqrt{4+2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\sqrt{\left(\sqrt{3}+1\right)^2}=\dfrac{\sqrt{3}+1}{\sqrt{2}}=\dfrac{\sqrt{2}+\sqrt{6}}{2}\)

23 tháng 7 2021

\(A=\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\\ =\sqrt{3+\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}}\\ =\sqrt{3+\sqrt{5-1+2\sqrt{3}}}\\ =\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\sqrt{3+\sqrt{3}-1}\\ =\sqrt{2+\sqrt{3}}\)

5 tháng 10 2020

b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)

4 tháng 10 2020

a) \(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3}-2\sqrt{5}+3}\)

\(=\sqrt{3-\sqrt{3}-\sqrt{5}}\)

11 tháng 9 2018

\(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+2\sqrt{2\sqrt{12}}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

23 tháng 7 2017

a, \(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{5-8}}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)

\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{10+2\sqrt{5}-4}\)

\(=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

23 tháng 7 2017

b, \(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

a,

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2\)

b,

A=\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+2\sqrt{12}}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-1-\sqrt{12}}}}{\sqrt{6}+\sqrt{2}}\)\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=1\)

B=

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

3 tháng 7 2017

\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

12 tháng 7 2017

\(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}=\sqrt{5-\sqrt{12+2\sqrt{12}\sqrt{1}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left(\sqrt{12}+1\right)}=\sqrt{5-\sqrt{12}-1}=\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

25 tháng 11 2020

học dốt quá

25 tháng 11 2020

Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)

14 tháng 5 2016

Theo mình thấy thì như thế này

Ta có \(\left(3\sqrt{5}\right)^2=9.5=45\)

Mà \(45>36\)

Nên \(\sqrt{45}>\sqrt{36}\Leftrightarrow3\sqrt{5}>6\)

\(\Leftrightarrow163+3\sqrt{5}>163+6=169\)

\(\Leftrightarrow\sqrt{163+3\sqrt{5}}>\sqrt{169}=13\)

Do đó \(13-\sqrt{163+3\sqrt{5}}<0\)

Nên \(\sqrt{13-\sqrt{163+3\sqrt{5}}}<0\) (không có nghĩa )

Do đó A không thể rút gọn

14 tháng 5 2016

A không rút gọn được đâu bạn

23 tháng 5 2017

\(a,\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{2}\)

\(=\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}=1\)

23 tháng 5 2017

\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{25}=5\)