Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)= \(\frac{2y}{3\left(x+y\right)^2}\)
\(\frac{x^2+2x+1}{5x^3+5x^2}=\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}=\frac{x+1}{5x^2}\)
\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
\(=\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)\left(x+y\right)^2}\)
\(=\frac{10y}{15\left(x+y\right)^2}\)
\(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\frac{\left(x^2-x\right)-\left(xy-y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)
\(=\frac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)
\(=\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)
\(=\frac{x-y}{x+y}\)
a)\(\frac{2xy}{3\left(x+y\right)^2}\)
b)=\(\frac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)
=\(\frac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)=\(\frac{\left(x-y\right)}{\left(x+y\right)}\)
a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)
b)\(=\frac{3x\left(x+y\right)}{y}\)
c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)
j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
Câu b) bạn xem lại nhé.
Học tốt ^3^
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
a)P=2(1-5x)(4+5x)+(5x+4)2
=5x-1-50x2-30x+8+25x2+40x+16
=(-50x2+25x2)+(5x-30x+40x)+8+16-1
=-25x2+15x+23
b)Q=(x-y)3+(y+x)3+(y-x)3-3xy(x+y)
=(x+y)3-3xy(x+y)
=x3+y3
a) \(\frac{x^2-y^2}{\left(x+y\right)\left(ay-\text{ax}\right)}=\frac{\left(x+y\right)\left(x-y\right)}{-a\left(x+y\right)\left(x-y\right)}=\frac{-1}{a}\)
b) \(\frac{2ax-2x-3y+3ay}{4ax+\text{4x}+6y+6ay}=\frac{2x\left(a-1\right)+3y\left(a-1\right)}{\text{4x}\left(a+1\right)+6y\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(2x+3y\right)}{2\left(a+1\right)\left(2x+3y\right)}=\frac{a-1}{2\left(a+1\right)}\)
ko ghi đề bài nha làm luôn
a) \(\frac{\left(2x+2y\right)+\left(5x+5y\right)}{\left(2x+2y\right)-\left(5x+5y\right)}=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\frac{\left(2+5\right)\left(x+y\right)}{\left(2-5\right)\left(x+y\right)}=\frac{-7}{3}\)
b)\(\frac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\frac{4x}{5x^2}=\frac{4}{5x}\)
a)\(\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}\)=\(\frac{x+1}{5x^2}\)
b)\(\frac{10y}{15\left(x+y\right)^2}\)