Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>-3
b: \(Q=\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\dfrac{1}{x+3}\right)\cdot\dfrac{x+3}{x^2-1}\)
\(=\dfrac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\cdot\dfrac{x+3}{x^2-1}\)
\(=\dfrac{2x^2-2}{x^2-1}\cdot\dfrac{1}{x^2-3x+9}=\dfrac{2}{x^2-3x+9}\)
a: \(P=\left(\dfrac{-\left(x+1\right)}{x-1}+\dfrac{x-1}{x+1}-\dfrac{4x^2}{\left(x-1\right)\left(x-1\right)}\right)\cdot\dfrac{\left(x-1\right)^2}{4\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2-2x-1+x^2-2x+1-4x^2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{4\left(x+1\right)}\)
\(=\dfrac{-4x^2-4x}{x+1}\cdot\dfrac{1}{4\left(x+1\right)}\)
\(=\dfrac{-4x\left(x+1\right)}{x+1}\cdot\dfrac{1}{4\left(x+1\right)}=\dfrac{-x}{x+1}\)
b: khi x=5/8 thì \(P=\left(-\dfrac{5}{8}\right):\dfrac{13}{8}=\dfrac{-5}{13}\)
c: Để P là số nguyên thì \(-x-1+1⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
\(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)
\(A=x^2+4x-6\left(x^2-1\right)+\left(4x^2-4x+1\right)\)
\(A=x^2+4x-6x^2+6+4x^2-4x+1\)
\(A=-x^2+7\)
Để A có giá trị bằng 3 thì :
\(-x^2+7=3\)
\(-x^2=-4\)
\(x^2=4\)
\(x\in\left\{\pm2\right\}\)
Vậy..........