K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: x<>-3

b: \(Q=\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\dfrac{1}{x+3}\right)\cdot\dfrac{x+3}{x^2-1}\)

\(=\dfrac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\cdot\dfrac{x+3}{x^2-1}\)

\(=\dfrac{2x^2-2}{x^2-1}\cdot\dfrac{1}{x^2-3x+9}=\dfrac{2}{x^2-3x+9}\)

 

a: \(P=\left(\dfrac{-\left(x+1\right)}{x-1}+\dfrac{x-1}{x+1}-\dfrac{4x^2}{\left(x-1\right)\left(x-1\right)}\right)\cdot\dfrac{\left(x-1\right)^2}{4\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2-2x-1+x^2-2x+1-4x^2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x-1}{4\left(x+1\right)}\)

\(=\dfrac{-4x^2-4x}{x+1}\cdot\dfrac{1}{4\left(x+1\right)}\)

\(=\dfrac{-4x\left(x+1\right)}{x+1}\cdot\dfrac{1}{4\left(x+1\right)}=\dfrac{-x}{x+1}\)

b: khi x=5/8 thì \(P=\left(-\dfrac{5}{8}\right):\dfrac{13}{8}=\dfrac{-5}{13}\)

c: Để P là số nguyên thì \(-x-1+1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

22 tháng 11 2017

giup minh voi cac ban

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

13 tháng 12 2018

\(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)

\(A=x^2+4x-6\left(x^2-1\right)+\left(4x^2-4x+1\right)\)

\(A=x^2+4x-6x^2+6+4x^2-4x+1\)

\(A=-x^2+7\)

Để A có giá trị bằng 3 thì :

\(-x^2+7=3\)

\(-x^2=-4\)

\(x^2=4\)

\(x\in\left\{\pm2\right\}\)

Vậy..........

21 tháng 2 2018

Bạn viết lại đề đi.Viết phân số cho dễ nhìn,nhìn vậy ai hiểu gì :3

Thêm dấu vào,thời đại nào rồi...