Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{10x}{\left(x+4\right)\left(x-1\right)}-\dfrac{2x-3}{x+4}-\dfrac{x+1}{x-1}\)
\(=\dfrac{10x-\left(2x^2-2x-3x+3\right)-\left(x^2+5x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{10x-2x^2+5x-3-x^2-5x-4}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{-3x^2+10x-7}{\left(x+4\right)\left(x-1\right)}\)
\(=\dfrac{-\left(3x^2-10x+7\right)}{\left(x-1\right)\left(x+4\right)}=-\dfrac{\left(x-1\right)\left(3x-7\right)}{\left(x-1\right)\left(x+4\right)}\)
\(=\dfrac{-3x+7}{x+4}\)
b: \(B+3=\dfrac{-3x+7+3x+12}{x+4}=\dfrac{19}{x+4}>0\)
=>B>-3
\(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)
\(A=x^2+4x-6\left(x^2-1\right)+\left(4x^2-4x+1\right)\)
\(A=x^2+4x-6x^2+6+4x^2-4x+1\)
\(A=-x^2+7\)
Để A có giá trị bằng 3 thì :
\(-x^2+7=3\)
\(-x^2=-4\)
\(x^2=4\)
\(x\in\left\{\pm2\right\}\)
Vậy..........
\(B=x^4-2x^3+2x^2-4x+5\)
\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)
\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)
Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)
Kết luận...............................................