Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
a) \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
b) \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)
c) \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
d) \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)
\(=\sqrt{5+\sqrt{2}}\)
e) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)
\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)
\(=2+\sqrt{9-4\sqrt{5}}\)
\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2+\sqrt{5}-2=\sqrt{5}\)
f) đề sai nhé:
\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)
g) \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)
h) \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)
\(C=\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{\frac{4-2\sqrt{3}}{2}}.\left[\sqrt{2}.\left(\sqrt{3}+\sqrt{1}\right)\right]\)
\(=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)
\(=\frac{\sqrt{3}-1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(D=\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
\(=\frac{\left(8+2\sqrt{2}\right).\left(3+\sqrt{2}\right)}{9-2}-\frac{\sqrt{2}.\left(2+3\sqrt{2}\right)}{2}+\frac{\sqrt{2}.\left(1+\sqrt{2}\right)}{1-2}\)
\(=\frac{24+14\sqrt{2}+4}{7}-\frac{2\sqrt{2}+6}{2}-\frac{\sqrt{2}+2}{1}\)
\(=\frac{28+14\sqrt{2}}{7}-\sqrt{2}-3-\sqrt{2}-2\)
\(=4+2\sqrt{2}-2\sqrt{2}-5\)
\(=-1\)
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
\(A=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)=2\)
\(B=\sqrt{18+8\sqrt{2}}+\sqrt{18-8\sqrt{2}}=\sqrt{\left(\sqrt{2}+4\right)^2}+\sqrt{\left(4-\sqrt{2}\right)^2}=4+\sqrt{2}+4-\sqrt{2}=8\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+\frac{2\sqrt{2}}{\sqrt{2}}.\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)