Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)
\(=21-14\sqrt{2}+14\sqrt{2}\)
=21
1) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
Xin lỗi xin lỗi :v
1)\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
= \(\sqrt{7}.\left(3\sqrt{7}-2\sqrt{14}\right)+14\sqrt{2}\)
= 21 - \(14\sqrt{2}+14\sqrt{2}\)
= 21
2) \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)
= \(\left(2\sqrt{2}-\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{5}-2\sqrt{2}\right)\)
= \(\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)\)
=\(\left(\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2\)
= -3
\(\text{a)}\)\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-5\sqrt{10}\)
\(\Leftrightarrow10\)
\(\text{b)}\)\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-2\sqrt{21}-7+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-7\)
\(\sqrt{48}=4\sqrt{3}\) =>7+\(\sqrt{48}=7+4\sqrt{3}=\)(\(2+\sqrt{3}\))2
\(\sqrt{28-16\sqrt{3}}=2\sqrt{7-4\sqrt{3}}\)=2(2-\(\sqrt{3}\))=4-2\(\sqrt{3}\)=(\(\sqrt{3}-1\))2
viết lại biểu thức ta được
(\(\sqrt{\sqrt{7}+4\sqrt{3}}-\left(\sqrt{3}-1\right)\))(2+\(\sqrt{3}\))
Xem lại đề bài?
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
Lời giải:
\((\sqrt{28}-2\sqrt{14}+\sqrt{7})\sqrt{7}+7\sqrt{8}\)
\(=(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7})\sqrt{7}+14\sqrt{2}\)
\(=\sqrt{7}(2-2\sqrt{2}+1).\sqrt{7}+14\sqrt{2}\)
\(=7(3-2\sqrt{2})+14\sqrt{2}=21-14\sqrt{2}+14\sqrt{2}=21\)