Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
5,\(cos^2\frac{\pi}{24}\left(1-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}\left(sin^2\frac{\pi}{24}+cos^2\frac{\pi}{24}-cos^2\frac{\pi}{24}\right)=cos^2\frac{\pi}{24}.sin^2\frac{\pi}{24}\)
a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)
b) \(tan^2x+cot^2x+2\)
\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)
\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)
\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)
\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)
c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)
\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)
\(=1+sin^2x.cos^2x\)
Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^
A = (tan + cot)2 - (tan - cot)2 = 2tan×2cot = 4
B = sin6 + cos6 + 3sin2 + cos2
= (sin2 + cos2)(sin4 - sin2 cos2 + cos4) 3sin2 + cos2
= (sin2 + cos2)2 - 3sin2 cos2 + 3sin2 + cos2
= 3sin2 (1 - cos2) + 1 + cos2
= 3sin4 + 1 + cos2
Có thể câu B bạn chép sai đề. Đề đúng là
B = sin6 + cos6 + 3sin2 cos2
= (sin2 + cos2)(sin4 - sin2 cos2 + cos4) 3sin2 cos2
= (sin2 + cos2)2 - 3sin2 cos2 + 3sin2 cos2 = 1
\(B\sqrt{2}=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)\(=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2=\sqrt{5}+1-\sqrt{5}+1-2=0\Rightarrow B=0\)
\(C=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(1-\sin^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(1-\cos^2a\right)\)
\(=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(\cos^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(\sin^2a\right)\)
\(=\frac{\sin^2a+\cos^2a}{\cos^2a}.\cos^2a+\frac{\cos^2a+\sin^2a}{\sin^2a}.\sin^2a\)
\(=\frac{1}{\cos^2a}.\cos^2a+\frac{1}{\sin^2a}\sin^2a=2\)
B
Bạn dùng theo công thức này
\(\sqrt{m+n\sqrt{p}};\sqrt{m-n\sqrt{p}}\)
Dùng pt bậc 2
\(a=1;b=-m;c=\frac{\left(n\sqrt{p}\right)^2}{4}\)
Nghiệm x1 ; x2
\(\sqrt{\left(\sqrt{x1}+\sqrt{x2}\right)^2};\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\)
\(B=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{2}\)
\(=|\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}|-|\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}|-\sqrt{2}\)
\(=\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)-\sqrt{2}\)
\(=2\cdot\sqrt{\frac{1}{2}}-\sqrt{2}\)
\(=\sqrt{2}-\sqrt{2}=0\)
C.
\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\)
\(=1+1=2\)
a)
\(A=\cot^2x\left(\cos^2x-1+\sin^2x\right)+\sin^2x\)
\(A=\cot^2x\left(\cos^2x+\sin^2x-1\right)+\sin^2x\)
\(A=\cot^2x\left(1-1\right)+\sin^2x\)
\(A=\cot^2x.0+\sin^2x\)
\(A=\sin^2x\)
b) \(B=\cos^4\alpha-\sin^4\alpha+2\sin^2\alpha+8\)
\(B=\left(cos^2\alpha+sin^2\alpha\right)\left(cos^2\alpha-sin^2\alpha\right)+2\sin^2\alpha+8\)
\(B=cos^2\alpha-sin^2\alpha+2\sin^2\alpha+8\)
\(B=cos^2\alpha+sin^2\alpha+8\)
\(B=1+8\)
\(B=9\)
\(A=\sqrt{sin^2x-sin^2x.\frac{cos\text{ }x}{sin\text{ }x}+cos^2x-cos^2x.\frac{sin\text{ }x}{cos\text{ }x}}\)
\(A=\sqrt{\left(sin^2x+cos^2x\right)-\left(sin\text{ }x.cos\text{ }x-cos\text{ }x.sin\text{ }x\right)}\)
\(A=\sqrt{1}=1\)
\(A=\sqrt{\sin^2x\left(1-\cot x\right)+\cos^2x\left(1-\tan x\right)}\)
\(A=\sqrt{\sin^2x-\sin^2x\cot x+\cos^2x-\cos^2x\tan x}\)
\(A=\sqrt{1-\sin^2x\frac{\cos x}{\sin x}-\cos^2x\frac{\sin}{\cos}}\)
\(A=\sqrt{1-\sin x\cos x-\sin x\cos x}\)
\(A=\sqrt{\sin^2x-2\sin x\cos x+\cos^2x}\)
\(A=\sqrt{\left(\sin x-\cos x\right)^2}=\left|\sin x-\cos x\right|\)