Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)
b) \(tan^2x+cot^2x+2\)
\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)
\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)
\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)
\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)
c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)
\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)
\(=1+sin^2x.cos^2x\)
Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^
a) khai triển được 2sin2+2cos2=2(sin2+cos2=2.1=2
b)cot2-cos2.cot2=cot2(1-cos2)=cot2.sin2=cos2/sin2.sin2=cos2
c)sin.cos(tan+cot)=sin.cos.tan+sin.cos.cot=sin.cos.sin/cos+sin.cos.cos/sin=sin2+cos2=1
d)tan2-tan2.sin2=tan2(1-sin2)=tan2.cos2=sin2/cos2.cos2=sin2
\(a,1-sin^2\alpha=cos^2\alpha\)
\(b,\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=sin^2\alpha\)
\(c,1+sin^2\alpha+cos^2\alpha=1+1=2\)
\(d,sin\alpha-sin\alpha.cos^2\alpha=sin\alpha.\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
\(e,sin^2\alpha+cos^2\alpha+2sin^2\alpha.cos^2\alpha\)
\(=1+2sin^2\alpha.cos^2\alpha\)
a)
\(A=\cot^2x\left(\cos^2x-1+\sin^2x\right)+\sin^2x\)
\(A=\cot^2x\left(\cos^2x+\sin^2x-1\right)+\sin^2x\)
\(A=\cot^2x\left(1-1\right)+\sin^2x\)
\(A=\cot^2x.0+\sin^2x\)
\(A=\sin^2x\)
b) \(B=\cos^4\alpha-\sin^4\alpha+2\sin^2\alpha+8\)
\(B=\left(cos^2\alpha+sin^2\alpha\right)\left(cos^2\alpha-sin^2\alpha\right)+2\sin^2\alpha+8\)
\(B=cos^2\alpha-sin^2\alpha+2\sin^2\alpha+8\)
\(B=cos^2\alpha+sin^2\alpha+8\)
\(B=1+8\)
\(B=9\)