Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)
\(=\sqrt{91.144-1440}=\sqrt{144\left(91-10\right)}=\sqrt{12^2.9^2}=12.9=108\)
b) \(\sqrt{146,5^2-109,5^2+27.256}=\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)
\(=\sqrt{37.256+27.256}=\sqrt{256\left(37+27\right)}=\sqrt{256.64}=\sqrt{16^2.8^2}=16.8=128\)
\(\sqrt{117,5^2-26,5^2}-1440=-202475\)
\(\sqrt{146,5^2-109,5^2+27,256=}-11816494\)
\(a=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}=\sqrt{3,6\left(10\right)}=\sqrt{36}=6\)
a) \(\sqrt{6,8^2-3,2^2}=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}\)
=\(\sqrt{3,6.10}=\sqrt{36}=6\)
b)\(\sqrt{21,8^2-18,2^2}=\sqrt{\left(21,8-18,2\right)\left(21,8+18,2\right)}\)
=\(\sqrt{3,6.40}=\sqrt{144}=12\)
c)\(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)
=\(\sqrt{91.144-1440}=\sqrt{144.81}=\sqrt{144}.\sqrt{81}=108\)
d)\(\sqrt{146,5^2-109,5^2+27.256}\)=\(\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)
=\(\sqrt{37.256+\sqrt{27.256}}=\sqrt{64.256}=\sqrt{64}.\sqrt{256}=128\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Với \(x=3\)( thỏa mãn ĐKXĐ ) ta có \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)
c) A ở đâu ???? '-'
\(A=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)=2\)
\(B=\sqrt{18+8\sqrt{2}}+\sqrt{18-8\sqrt{2}}=\sqrt{\left(\sqrt{2}+4\right)^2}+\sqrt{\left(4-\sqrt{2}\right)^2}=4+\sqrt{2}+4-\sqrt{2}=8\)
\(C=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+\frac{2\sqrt{2}}{\sqrt{2}}.\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2.\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(a,\)\(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right).\)
\(=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\)\(.\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(=\frac{\left(\sqrt{x}-\sqrt{3}\right)^22\left(\sqrt{x}+\sqrt{3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(b,x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
\(\Rightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)=2\left(\sqrt{3}-1-\sqrt{3}\right)=2.\left(-1\right)=-2\)
a) \(\sqrt{117.5^2-26.5^2-1440}\)
\(=\sqrt{5^2\left(117-26\right)-1440}\)
\(=5\sqrt{177-26-1440}\)
\(=5\sqrt{-1289}\)
\(=-5\sqrt{1289}\)
Câu B tương tự .
E ms lên lớp 9 sai thì thôi nha