K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

\(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}}{\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2.\sqrt{2}.1+1^2}}{\sqrt{3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\dfrac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)^2}=\dfrac{1}{\sqrt{2}-1}+\dfrac{1}{\sqrt{2}+1}\)

\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2}+1-\sqrt{2}+1=2\)

3 tháng 7 2018

Phải là \(\sqrt{17+12\sqrt{2}}\) chớ bạn :<

\(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\)

\(=\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{1}\)

\(=2\)

3 tháng 7 2018

Lỗi đề mất rồi :<

7 tháng 7 2018

A: here

\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}=\dfrac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}}-\dfrac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2\cdot3\cdot2\sqrt{2}+8}}=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}-\dfrac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)^2}=\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{2-1}=\dfrac{2}{1}=2\)

7 tháng 7 2018

\(A=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3+2\sqrt{3}+1}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3-2\sqrt{3}+1}}=\dfrac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}+\dfrac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}=\dfrac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-\sqrt{18}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-\sqrt{18}}{9-3}=\dfrac{12\sqrt{2}-6\sqrt{2}}{6}=\sqrt{2}\) \(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}=\dfrac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2.3.2\sqrt{2}+8}}-\dfrac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2.3.2\sqrt{2}+8}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}=\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}=3\sqrt{2}+1-2\sqrt{2}-3\sqrt{2}+1+2\sqrt{2}=2\)

23 tháng 6 2017

\(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\) = \(\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

= \(\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\) = \(\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\)

= \(\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-\left(3\sqrt{2}-4+3-2\sqrt{2}\right)}{9-8}\)

= \(\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{1}\)

= \(2\)

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

21 tháng 8 2018

a) \(\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{1}{2}\)

b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=1+\sqrt{2}\)

d) \(\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}\\ =\sqrt{81-17}=\sqrt{64}=8\)

21 tháng 8 2018

\(a.\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(b.\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

\(c.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\dfrac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

\(d.\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}=\sqrt{81-17}=8\)

26 tháng 7 2018

*\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}+1=2\)

\(\Rightarrow A\in Z\)

* \(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-2\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\) \(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\) \(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\) \(=\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{9-8}\)

\(=2\)

\(\Rightarrow B\in Z\)

26 tháng 7 2018

Cảm ơn bạn nhiều ^^

\(=\sqrt{\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}}-2-\sqrt{10}+3-2\sqrt{2}\)

\(=\sqrt{\sqrt{10}}+1-\sqrt{10}-2\sqrt{2}\)

7 tháng 10 2018

+) ta có : \(A=\sqrt{13+4\sqrt{10}}-\sqrt{13-4\sqrt{10}}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}-2\sqrt{2}+\sqrt{5}=2\sqrt{5}\) (sữa đề)

+) ta có : \(B=\sqrt{\dfrac{3-2\sqrt{2}}{17-12\sqrt{2}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(3-2\sqrt{2}\right)^2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{1}{\sqrt{2}-1}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\sqrt{2}+1+2-\sqrt{3}=3-\sqrt{3}+\sqrt{2}\) (sữa đề )

+) đk : \(x\ne-3\)

ta có : \(C=\dfrac{\sqrt{x^2+6x+9}}{x+3}=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)

\(\left[{}\begin{matrix}C=1\left(x>-3\right)\\C=-1\left(x< -3\right)\end{matrix}\right.\)

+) \(m\ge\dfrac{5}{2}\)

ta có : \(D=\sqrt{2m+4+6\sqrt{2m-5}}-\sqrt{2m-5}\)

\(=\sqrt{\left(\sqrt{2m-5}+3\right)^2}-\sqrt{2m-5}=\left|\sqrt{2m-5}+3\right|-\sqrt{2m-5}\)

\(\Leftrightarrow\left[{}\begin{matrix}C=3\left(m\ge7\right)\\C=-3-2\sqrt{2m-5}\left(\dfrac{5}{2}\le m\le7\right)\end{matrix}\right.\)

7 tháng 10 2018

Mysterious Person giúp mk nha

31 tháng 5 2017

a ) \(\dfrac{2}{\sqrt{3}-1}\) - \(\dfrac{2}{\sqrt{3}+1}\) = \(\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

= \(\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\) = \(\dfrac{4}{2}\) = 2

b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}\) - \(\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{5\left(2\sqrt{5}-3\sqrt{2}\right)-5\left(2\sqrt{5}+3\sqrt{2}\right)}{12\left(2\sqrt{5}+3\sqrt{2}\right)\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{10\sqrt{5}-15\sqrt{2}-10\sqrt{5}-15\sqrt{2}}{12\left(20-18\right)}\)

= \(\dfrac{-30\sqrt{2}}{24}\) = \(\dfrac{-15\sqrt{2}}{12}\) = \(\dfrac{-5\sqrt{2}}{4}\)

c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) +\(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\) = \(\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

= \(\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\) = \(\dfrac{60}{20}\) = 3

31 tháng 5 2017

d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)

= \(\dfrac{\sqrt{3}}{\sqrt{2}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

= \(\dfrac{\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}}{2-1}\) = \(2\sqrt{3}\)