\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

*\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}+1=2\)

\(\Rightarrow A\in Z\)

* \(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-2\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\) \(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\) \(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\) \(=\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{9-8}\)

\(=2\)

\(\Rightarrow B\in Z\)

26 tháng 7 2018

Cảm ơn bạn nhiều ^^

9 tháng 8 2018

Bài 1 bạn nhóm , trục như thường nhé :D

Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)

\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)

\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)

\(D=-\sqrt{6}\left(do:D< 0\right)\)

9 tháng 8 2018

cảm ơn bn nhé!!! yeu

26 tháng 6 2017

3 bài đầu dễ tự làm nhé.

Bài 4:

\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\dfrac{\sqrt{\left(1-\sqrt{2}\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{1+\sqrt{2}}{3+2\sqrt{2}}\)

\(=\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(1+\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(3-2\sqrt{2}+3\sqrt{2}-4\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(-1+\sqrt{2}\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}+1-\sqrt{2}\)

\(=0+2\)

\(=2\)

Vậy B là số tự nhiên.

26 tháng 6 2017

1.

a) nhân cả tử lẫn mẫu với 1+ \(\sqrt{2}-\sqrt{5}\)

b) tương tự a

2.

a) tách 29 = 20 + 9 là ra hằng đẳng thức, tiếp tục.

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

8 tháng 8 2017

\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

    \(=\sqrt{5}-1-\sqrt{5}-1=-2\)

Vậy \(A\in Z\)

Làm tương tự với B.

18 tháng 6 2018

2)a) \(\sqrt{17-12\sqrt{2}}-2\sqrt{2}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-2\sqrt{2}\)

\(=\left|3-2\sqrt{2}\right|-2\sqrt{2}\)

\(=3-2\sqrt{2}-2\sqrt{2}\)

\(=3-4\sqrt{2}\)

b) \(\sqrt{15-6\sqrt{6}}+\sqrt{6}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{6}\)

\(=\left|3-\sqrt{6}\right|+\sqrt{6}\)

\(=3-\sqrt{6}+\sqrt{6}\)

\(=3\)

7 tháng 10 2018

+) ta có : \(A=\sqrt{13+4\sqrt{10}}-\sqrt{13-4\sqrt{10}}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}-2\sqrt{2}+\sqrt{5}=2\sqrt{5}\) (sữa đề)

+) ta có : \(B=\sqrt{\dfrac{3-2\sqrt{2}}{17-12\sqrt{2}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(3-2\sqrt{2}\right)^2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{1}{\sqrt{2}-1}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\sqrt{2}+1+2-\sqrt{3}=3-\sqrt{3}+\sqrt{2}\) (sữa đề )

+) đk : \(x\ne-3\)

ta có : \(C=\dfrac{\sqrt{x^2+6x+9}}{x+3}=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)

\(\left[{}\begin{matrix}C=1\left(x>-3\right)\\C=-1\left(x< -3\right)\end{matrix}\right.\)

+) \(m\ge\dfrac{5}{2}\)

ta có : \(D=\sqrt{2m+4+6\sqrt{2m-5}}-\sqrt{2m-5}\)

\(=\sqrt{\left(\sqrt{2m-5}+3\right)^2}-\sqrt{2m-5}=\left|\sqrt{2m-5}+3\right|-\sqrt{2m-5}\)

\(\Leftrightarrow\left[{}\begin{matrix}C=3\left(m\ge7\right)\\C=-3-2\sqrt{2m-5}\left(\dfrac{5}{2}\le m\le7\right)\end{matrix}\right.\)

7 tháng 10 2018

Mysterious Person giúp mk nha

26 tháng 6 2017

A= căn (5-2 (căn 5) +1)-căn (5+2 (căn 5) +1)

=căn ((căn 5)-1)^2 -căn ((căn 5)+1)^2

=l (căn 5) -1l  -   l (căn 5) +1l

=căn 5 -1 -căn 5 -1 

=-2

26 tháng 6 2017

A,  biến đổi 6= căn bậc hai của 5 + 1 -> hằng đẳng thức

Tính tiếp sẽ ra