Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ đây là phần những hằng đẳng thức đáng nhớ bạn à
a, ( x + y )2 - ( x - y )2 = [( x + y ) - ( x - y )] . [( x + y ) + ( x - y )]
= 2y . 2x
= 4xy
b, ( a + b )3 + ( a - b )3 - 2a3 = ( a3 + 3a2b + 3ab2 + b3 ) + ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3
= 2a3 + 6ab2 - 2a3 = 6ab2
ý c và d khó quáxin lỗi nha, mình làm đc 2 ý trên thôi
4.a) \(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)
\(\Rightarrow x=-2\)
b) \(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)
\(-\left(x^2+3x-10\right)=0\)
\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)
\(-\left(x-2\right)\left(x+5\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(x^3+x^2-4x-4=0\)
\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
g) \(\left(x-1\right)\left(2x+3-x\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)
\(\left(x-3\right)^2=0\Rightarrow x=3\)
bài 1.
a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)
b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)
c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)
d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)
.bài 2
a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)
b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)
c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)
d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)
Trả lời:
Bài 1: Rút gọn biểu thức:
a) A = ( x - y )2 + ( x + y )2
= x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
b) B = ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
c) C = ( 2a + b )2 - ( 2a - b )2
= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )
= 4a2 + 4ab + b2 - 4a2 + 4ab - b2
= 8ab
d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4
= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4
= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4
= - 4x2 + 20x - 13
Bài 2: Rút gọn rồi tính giá trị biểu thức:
a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )
= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 )
= 2x2 + 6x - 2x2 + 4x + 16
= 10x + 16
Thay x = 1/2 vào A, ta có:
\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x
= 9x2 + 24x + 16 - x2 + 16 - 10x
= 8x2 + 14x + 32
Thay x = - 1/10 vào B, ta có:
\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )
= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )
= - 3x2 + 6x + 3x2 - 12
= 6x - 12
Thay x = 1 vào C, ta có:
\(C=6.1-12=-6\)
d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 )
= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x
= 4x - 5
Thay x = - 1 vào D, ta có:
\(D=4.\left(-1\right)-5=-9\)
a) \(A=\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(=x^2-2xy+y^2+x^2+2xy+y^2\)
\(=\left(x^2+x^2\right)-\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+2y^2\)
\(=2.\left(x^2+y^2\right)\)
b) \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(=\left(4a^2-4a^2\right)+\left(4ab+4ab\right)+\left(b^2-b^2\right)\)
\(=8ab\)\
c) \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(2xy+2xy\right)+\left(y^2-y^2\right)\)
\(=4xy\)
d) \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+1-8x^2+24x-18+4\)
\(=\left(4x^2-8x^2\right)-\left(4x-24x\right)+\left(1-18+4\right)\)
\(=-4x^2+20x-13\)
\(=-4x^2+20x-25+12\)
\(=-\left(4x^2-20x+25\right)-8\)
\(=-\left[\left(2x\right)^2-2.4x.5+5^2\right]-8\)
\(=-\left(2x-5\right)^2-8\)
a) Mình không hiểu đề cho lắm
b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)
\(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+5x\)
c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(2x+5\right)^2+3\left(4x+1\right)\left(4x-1\right)\)
\(=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)
\(=8x^2+40x+50+48x^2-3\)
\(=56x^2+40x+47\)
d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4\)
\(=-77\)
Câu 1 : Tìm x :
1. \(A=x^2+4x-2\)
\(A=x^2+2.x.2+2^2-2^2-2\)
\(A=\left(x^2+4x+2^2\right)-4-2\)
\(A=\left(x+2\right)^2-6\)
\(\left(x+2\right)^2-6\ge-6\)
MIn A= -6 khi \(\left(x+2\right)^2=0\)
=> \(x+2=0hayx=-2\)
Vậy x=2
những câu tiếp theo làm tg tự như thế nhé
Câu 1:
a) Ta có: \(A=x^2+4x-2\)
\(=x^2+4x+4-6\)
\(=\left(x+2\right)^2-6\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: x=-2
b) Ta có: \(B=2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)
\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)
\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)
\(=2\left(x-1\right)^2+1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: x=1
c) Ta có: \(C=x^2+y^2-4x+2y+5\)
\(=x^2-4x+4+y^2+2y+1\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy: x=2 và y=-1
Câu 2:
a) Ta có: \(A=-x^2+6x+5\)
\(=-\left(x^2-6x-5\right)\)
\(=-\left(x^2-6x+9-14\right)\)
\(=-\left[\left(x^2-6x+9\right)-14\right]\)
\(=-\left[\left(x-3\right)^2-14\right]\)
\(=-\left(x-3\right)^2+14\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3
b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)
\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)
Ta có: \(\left(3y-1\right)^2\ge0\forall y\)
\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)
Từ (1) và (2) suy ra
\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\) và \(y=\frac{1}{3}\)
Câu 3:
a) Ta có: \(x^2+y^2-2x+4y+5=0\)
\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: x=1 và y=-2
b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)
\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy: x=3 và y=-2
a) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^2-3a^2b+3ab^2-b^3-2a^3\)
\(=6ab^2\)
c) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-\left(18^8-1\right)=1\)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(2xy+2xy\right)\)
\(=4xy\)