Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=3+\sqrt{3}\)
<=>\(A^3=27+27\sqrt{3}+27+3\sqrt{3}\)
<=>\(A^3=54+30\sqrt{3}\)
<=>\(A=\sqrt[3]{54+30\sqrt{3}}\)
Vậy....
b) mình sửa lại đề nhá:
Tính \(B=\sqrt[3]{54+30\sqrt{3}}+\sqrt[3]{54-30\sqrt{3}}\)
\(B=\sqrt[3]{\left(3+\sqrt{3}\right)^3}+\sqrt[3]{\left(3-\sqrt{3}\right)^3}\)
\(B=3+\sqrt{3}+3-\sqrt{3}=6\)
a) \(\frac{x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2y^2}+y\sqrt[3]{x}}\)
\(=\frac{\sqrt[3]{x^2y}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)}{\sqrt[3]{xy^2}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)}=\sqrt[3]{\frac{x^2y}{xy^2}}=\sqrt[3]{\frac{x}{y}}\)
b) \(\frac{\sqrt[3]{54}-2\sqrt[3]{16}}{\sqrt[3]{54}+2\sqrt[3]{16}}\)
\(=\frac{\sqrt[3]{27.2}-2\sqrt[3]{8.2}}{\sqrt[3]{27.2}+2\sqrt[3]{8.2}}\)
\(=\frac{3\sqrt[3]{2}-4\sqrt[3]{2}}{3\sqrt[3]{2}+4\sqrt[3]{2}}=\frac{-\sqrt[3]{2}}{7\sqrt[3]{2}}=-\frac{1}{7}\)
b) \(\sqrt{\left(7-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=7-\sqrt{3}+\sqrt{3}+1\)
\(=8\)
Đặt \(A=\sqrt[3]{54+30\sqrt{3}}+\sqrt[3]{54-30\sqrt{3}}\)
\(=\sqrt[3]{27+27\sqrt{3}+3\sqrt{3}+27}+\sqrt[3]{27-27\sqrt{3}-3\sqrt{3}+27}\)
\(=\sqrt[3]{\left(3+\sqrt{3}\right)^3}+\sqrt[3]{\left(3-\sqrt{3}\right)^3}\)
\(=3+\sqrt{3}+3-\sqrt{3}\)
\(=6\)
Vậy \(A=6\)