Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}\)
\(=\sqrt{2}\left(\sqrt{3}+1\right)\sqrt{2-\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(=3-1\)
\(=2\)
b, \(\left(\sqrt{4+\sqrt{15}}-\sqrt{16-3\sqrt{15}}\right)\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{8+2\sqrt{15}}-\sqrt{32-6\sqrt{15}}}{\sqrt{2}}.\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{3+2\sqrt{3}.\sqrt{5}+5}-\sqrt{27-2.3\sqrt{3}.\sqrt{5}+5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{3}+\sqrt{5}-3\sqrt{3}+\sqrt{5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{2\sqrt{5}-2\sqrt{3}}{\sqrt{2}}\left(\sqrt{5}+\sqrt{3}\right)\)
\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)
\(=\sqrt{2}\left(5-3\right)\)
\(=2\sqrt{2}\)
1: \(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2+\sqrt{3}\right)=4+2\sqrt{3}\)
2: \(=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
3: \(=\left(\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}\right)^2=\left(2\sqrt{7}\right)^2=28\)
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn