K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)

\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)

\(=32\)

b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)

29 tháng 6 2017

Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)

Ta lại có:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)

\(\Rightarrow1< A< 2\)

Vậy \(A\notin N\)

12 tháng 12 2018

a,\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}\)

\(=\sqrt{2}\left(\sqrt{3}+1\right)\sqrt{2-\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)

\(=3-1\)

\(=2\)

b, \(\left(\sqrt{4+\sqrt{15}}-\sqrt{16-3\sqrt{15}}\right)\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{8+2\sqrt{15}}-\sqrt{32-6\sqrt{15}}}{\sqrt{2}}.\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{3+2\sqrt{3}.\sqrt{5}+5}-\sqrt{27-2.3\sqrt{3}.\sqrt{5}+5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{3}+\sqrt{5}-3\sqrt{3}+\sqrt{5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{2\sqrt{5}-2\sqrt{3}}{\sqrt{2}}\left(\sqrt{5}+\sqrt{3}\right)\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)

\(=\sqrt{2}\left(5-3\right)\)

\(=2\sqrt{2}\)

21 tháng 8 2018

\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)

\(\Rightarrow A=\sqrt{\left(2+x\right)^{^{ }3}}-\sqrt{\left(2-x\right)^3}=\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)\)

\(\Rightarrow A=\dfrac{\sqrt{4+2\sqrt{4-x^2}}\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)}{\sqrt{2}\left(4+\sqrt{4-x^2}\right)}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{2+x}+\sqrt{2-x}\right)\left(\sqrt{2+x}-\sqrt{2-x}\right)}{\sqrt{2}}=2\sqrt{2}\)

21 tháng 8 2018

\(2\sqrt{2}\)

31 tháng 10 2018

\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)

\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)

\(=24-2\sqrt{6}\)

\(\sqrt{4\left(a-3\right)^2}\)

\(=\sqrt{2^2\left(a-3\right)^2}\)

\(=2\left(a-3\right)\)

\(=2a-6\)

15 tháng 7 2016

\(\sqrt{4\left(a-3\right)^2}=\sqrt{\left[2\left(a-3\right)\right]^2}=2\left(a-3\right)\)3)

15 tháng 11 2022

Câu 3: 

a: =>|2x-1|=4

=>2x-1=4 hoặc 2x-1=-4

=>x=-3/2 hoặc x=5/2

b: \(\Leftrightarrow2\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}=5\)

=>3căn x+1=5

=>x+1=25/9

=>x=16/9

21 tháng 6 2019

a) \(\sqrt{\left(3-6a\right)^2}=6a-3\)

( vì \(a\ge\frac{1}{2}\)\(\Rightarrow3-6a< 0\))