K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

\(a,\)\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2.\)

\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2=\left(x-y+x+y\right)^2=x^2\)

\(b,\)\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(54+8x\right)\)

\(=8x^2-27-54-8x=8x^2-8x-81\)

\(c,\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=27x^3+y^3-\left(27x^3-y^3\right)=2y^3\)

\(d,\)\(\left(a+b+c\right)^2-\left(a-c\right)^2-2ab+2bc\)

\(=a^2+b^2+c^2+2ab+2bc+2ac-a^2+2ac-c^2-2ab+2bc\)

\(=b^2+4bc+4ac\)

18 tháng 9 2017

\(1.\)

\(a.\)

\(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)

\(=\left(x^3-3^3\right)-\left(54+x^3\right)\)

\(=x^3-27-54-x^3\)

\(=-81\)

\(b.\)

\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(27x^3+y^3\right)-\left(27x^3-y^3\right)\)

\(=27x^3+y^3-27x^3+y^3\)

\(=2y^3\)

\(2.\)

\(a.\)

\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)

\(b.\)

\(\left(2x-3y\right)\left(4x^2+6xy+9y^3\right)=8x^3-27y^3\)

18 tháng 9 2017

1) a) \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)

\(=\left(x^3-3^3\right)-\left(54+x^3\right)\\ =\left(x^3-27\right)-54-x^3\\ =-27-54\\ =-81\)

b) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\\ =2y^3\)

2) a) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)

b) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)

13 tháng 8 2016

bai2 :cmr

a, a^3+b^3=(a+b)^3-3ab.(a+b)

VP= \(\left(a+b\right)^3-3ab\left(a+b\right)\)

=\(a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)

=VT

b.a^3-b^3=(a-b)^3+3ab,(a-b)

\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)

=\(a^3-3a^2b+ab^2.3-b^3+3a^2b-3ab^2=a^3-b^3\)

=VT

=> ĐPCM

 

13 tháng 8 2016

bài 1.

a) = 8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3-(8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3)

= 8x3+4x2y+2xy2-4x2y-2xy2-y- 8x3+4x2y-2xy2-4x2y+2xy2-y3

=-8x2y-6y3

b) = 27x3-18x2y+12xy2+18x2y-12xy2+8y3-27x3

=8y

13 tháng 9 2017

Tham khảo nha \(\)

1. Rút gọn:

a/ \(\left(x-3\right)\left(x^2+3x+9\right)+\left(54+x^3\right)\)

= \(x^3+3x^2+9x-3x^2-9x-27+54+x^3\)

= \(2x^3+27\)

b/ \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=27x^3-9x^2y+3xy^2+9x^2y-3xy^2+y^3-27x^3+9x^2y+3xy^2-9x^2y-3xy^2-y^3\)

\(=\left(27x^3-y^3\right)-\left(27x^3+y^3\right)\)

\(=27x^3-y^3-27x^3-y^3=-2y^3\)

2.Chứng minh rằng:

a/ \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

Xét VP có:

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\)

=> VT=VP

=> \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

b/ \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

Xét VP có:

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\)

=> VT=VP

=> \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)

Chúc bạn học tốt ♥
13 tháng 9 2017

khong bt ai hay sao ma con tra loi gium nua cho hung du sao van cam on

leuleu

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

11 tháng 7 2023

Yêu cầu của đề là gì ?

11 tháng 7 2023

Tính

 

2 tháng 10 2018

1)a)=>x2+y2+2xy-4(x2-y2-2xy)

=>x2+y2+2xy-4.x2+4y2+8xy

=>-3.x2+5y2+10xy

19 tháng 7 2018

Bài 10 :

Câu a :

\(5xy\left(x-y\right)-2x+2y\)

\(=5xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(5xy-2\right)\)

Câu b :

\(6x-2y-x\left(y-3x\right)\)

\(=2\left(3x-y\right)+x\left(3x-y\right)\)

\(=\left(3x-2y\right)\left(2+x\right)\)

Câu c :

\(x^2+4x-xy-4y\)

\(=x\left(x+4\right)-y\left(x+4\right)\)

\(=\left(x+4\right)\left(x-y\right)\)

Câu d :

\(3xy+2z-6y-xz\)

\(=\left(3xy-6y\right)-\left(xz-2z\right)\)

\(=3y\left(x-2\right)-z\left(x-2\right)\)

\(=\left(x-2\right)\left(3y-z\right)\)

19 tháng 7 2018

Bài 11 :

Câu a :

\(4-9x^2=0\)

\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy ........................

Câu b :

\(x^2+x+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{2}=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy........................

Câu c :

\(2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy..................

Câu d :

\(3x\left(x-4\right)-x+4=0\)

\(\Leftrightarrow3x\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy................................

Câu e :

\(x^3-\dfrac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\\x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy........................

Câu f :

\(\left(3x-y\right)^2-\left(x-y\right)^2=0\)

\(\Leftrightarrow\left(3x-y-x+y\right)\left(3x-y+x-y\right)=0\)

\(\Leftrightarrow2x\left(4x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4x-2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy..........................

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)