Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{\left(\sqrt{7}-2\right)^2}\)+\(\frac{25\sqrt{7}-63}{3\sqrt{7}-7}\)=\(\frac{12\sqrt{7}-28}{3\sqrt{7}-7}\)=4
Lời giải:
\(A=\frac{3}{\sqrt{7}+2}+\frac{4}{3-\sqrt{7}}-\frac{21}{\sqrt{7}}=\frac{3(\sqrt{7}-2)}{(\sqrt{7}+2)(\sqrt{7}-2)}+\frac{4(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}-\frac{21\sqrt{7}}{7}\)
\(=\frac{3(\sqrt{7}-2)}{7-2^2}+\frac{4(3+\sqrt{7})}{3^2-7}-3\sqrt{7}\)
\(=\sqrt{7}-2+2(3+\sqrt{7})-3\sqrt{7}=4\)
\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}=\) \(\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)
\(=\frac{x+6\sqrt{x}+9}{3+\sqrt{x}}\)
\(=\frac{\left(3+\sqrt{x}\right)^2}{3+\sqrt{x}}\)
\(=3+\sqrt{x}\)
\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}\left(x\ge0\right)=\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)
\(=\frac{x+\sqrt{6}+9}{3+\sqrt{x}}=\frac{\left(\sqrt{x}+3\right)^2}{3+\sqrt{x}}=3+\sqrt{x}\left(x\ge0\right)\)