Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,M=2^0-2^1+2^2-2^3+2^4-2^5+.....+2^2012
2M=2^1-2^2+2^3-2^4+2^5-2^5+......-2^2012+2^2013
3M=2^0+2^2013
M=(2^0+2^2013)÷3
Vậy.......
b,N=3-3^2+3^3-3^4+3^5-3^6+.....+3^2011-3^2012
3N=3^2-3^3+3^4-3^5+3^6-3^7+......+3^2012-3^2013
4N=3-3^2013
N=(3-3^2013)÷4
Vậy........
K tao nhé ko lên lớp tao đánh m😈😈😈
Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=> 2A - A = 1 - \(\frac{1}{2^{100}}\)
<=> A = 1 - \(\frac{1}{2^{100}}\)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\)
\(\Rightarrow2A=1+\frac{1}{2^1}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)
2A = 2 + 1 + 1/2 + 1/22 + 1/23 + ... + 1/22011
mà A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/22012
2A - A = 2 - 1/22012
A = 2 - 1/22012
Ta có A=1+1/2+1/2^2+1/2^3+........+1/2^2012
=>2A=2+1+1/2+1/2^2+.......+1/2^2011
=>2A-A=(2+1+1/2+1/2^2+.....+1/2^2011)-(1+1/2+1+1/2^2+1/2^3+.....+1/2^2012)
=>A=\(2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013-1}}{2^{2012}}\)
A=đã cho.
1/2*A=1/2+1/2^2+1/2^3+...+1/2^2012+1/2^2013.
A-1/2*A=1-1/2^2013(khử).
1/2*A=1-1/2^2013.
A=2*(1-1/2^2013).
A=2-2/2^2013.
A=2-1/2^2012.
2A=2+1+1/2+1/2^2+1/2^3+...+1/2^2011
2A-A=(2+1+1/2+1/2^2+1/2^3+...+1/2^2011)-(1+1/2+1/2^2+1/2^3+...+1/2^2012)
A=2-2/2012
k cho mik nhé
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\)
\(\frac{1}{2}A-A=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(-\frac{1}{2}A=\frac{1}{2^{2013}}-1\)
\(A=\frac{\frac{1}{2^{2013}}-1}{2}\)
A = 1+1/2+1/2^2+1/2^3+.....+1/2^2012
2A= 2. (1+1/2+1/22+1/23+.....+1/22012)
2A= 2 + 1 + 1/2 + 1/22 + 1/23 + ...+ 1/22011
2A - A= (2 + 1 + 1/2 + 1/22 + 1/23+ ...+ 1/22011) - (1+1/2+1/22+1/23+.....+1/22012)
1A= 2 + 1 + 1/2 + 1/22 + 1/23 + ...+ 1/22011 - 1-1/2-1/22+1/23+.....+1/22012
1A= 2 - 1/22012
A= 2-1/22012
A= 2 - 1/22012
số mũ nữa nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
=>\(A=1-\frac{1}{2^{100}}\)