Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(-\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(+\)\(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(\Leftrightarrow\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(-\)\(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(+\)\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\frac{2\sqrt{x}-9-x+3\sqrt{x}-3\sqrt{x}+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a) A= \(\sqrt{2-\sqrt{3}}\) \(\left(\sqrt{6}-\sqrt{2}\right)\)\(\left(2+\sqrt{3}\right)\)
A= \(\sqrt{2-\sqrt{3}}\) . \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{3}}\) .\(\left(\sqrt{6}-\sqrt{2}\right)\)
A= \(\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\) . \(\sqrt{2+\sqrt{3}}\) . \(\sqrt{2}\left(\sqrt{3}-1\right)\)
A= 1. \(\sqrt{2\left(2+\sqrt{3}\right)}\) \(\left(\sqrt{3}-1\right)\)
A=\(\sqrt{4+2\sqrt{3}}\) .\(\left(\sqrt{3}-1\right)\)
A=\(\sqrt{\left(\sqrt{3}+1\right)^2}\) \(\left(\sqrt{3}-1\right)\)
A=\(\left|\sqrt{3}+1\right|\)\(\left(\sqrt{3}-1\right)\)
A=\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
A=3-1
A=2
Vậy A=2
b)\(\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2}+\sqrt{3}}\) = \(\frac{\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}}{\sqrt{2}+\sqrt{3}}\) = \(\frac{\sqrt{2+\sqrt{3}}.\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{\sqrt{2}+\sqrt{3}}\)=\(\frac{\sqrt{2+\sqrt{3}}.1}{\sqrt{2}+\sqrt{3}}\) = \(\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}+\sqrt{3}}\) .