\(^2\)+ (x - y)\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

a)2(x - y)(x + y) + (x + y)2+ (x - y)2

=2.x2-y2 +x2+2xy+y2+x2-2xy+y2

=(2x2+x2+x2)+(-y2+y2+y2)+(2xy-2xy)

=4x2+y2

b)(x - y + z)2+ (z - y)2+ 2(x - y + z)(y - z)

=x2-y2+z2+z2-2zy+y2+2x-2y2+2z2

=(-y2+y2-2y2 ) +(z2+z2+2z2) +x2-2zy+2x

=-2y2 +4z2+x2-2xy +2x

22 tháng 7 2016

Dùng hằng đẳng thức thứ 2:

A= [(x+y+z)-(x+y)]2=z2

Chúc bạn học tốt!

22 tháng 7 2016

                Áp dụng HĐT thứ 2: (A - B)= A2 - 2AB + B2, ta có:

   (x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2 = [(x + y + z) - (x + y)]2

                                                                                      = z2 

22 tháng 7 2020

Bài làm:

Ta có: \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)(hằng đẳng thức đầu)

\(=\left(x-y+z+y-z\right)^2=x^2\)

22 tháng 7 2020

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left[\left(x-y+z\right)+\left(y-z\right)\right]^2=\left(x-y+z+y-z\right)^2=x^2\)

30 tháng 12 2018

Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)

\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)

                          \(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

Khi  đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)

Vậy Q=0

6 tháng 6 2017

\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)

17 tháng 6 2017

a) \(\left(x+y\right)^2+\left(x-y\right)^2\)

=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)

=\(x^2+2xy+y^2+x^2-2xy+y^2\)

\(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)

= \(\left(x-y+x+y\right)^2\)

\(=2x^2\)

c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)

\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

= \(\left(x-y+z-z+y\right)^2=x^2\)

28 tháng 6 2016

1)  2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2

2)

a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2

b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)

=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)

=(x-y+z+y-z)2

=x2

6 tháng 9 2018

\(a.\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2x^2+2y^2=2\left(x^2+y^2\right)\)

\(b.2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2=4x^2\)

\(c.\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

6 tháng 9 2018

a ) \(\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2x^2+2y^2=2\left(x^2+y^2\right)\)

b ) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2=4x^2\)

c ) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+\left(y-z\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

15 tháng 11 2018

\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x-2}{x^2+x+1}\)

2 tháng 9 2017

a ) ( x + y )2 +( x - y )2 = x2 + 2xy +y2 + x2 - 2xy + y2

= 2x2 + 2y2

b ) 2 . ( x - y ) . ( x + y ) + ( x + y )2 + ( x - y )2

= 2 . ( x2 - y2 ) + x2 + 2xy + y2 + x2 - 2xy + y2

= 2x2 - 2y2 + x2 +2xy + y2 + x2 - 2xy + y2

= 4x2

c ) ( x - y + z )2 - ( z - y )2 + 2.( x - y + z ) ( y - z )

= x2 + y2 + z2 - 2xy + 2 xz - 2yz - z2 + 2zy - y2 + 2xy - y2 + 2yz -2xz + 2y2 - 2z2

= x2