K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)

\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)

                          \(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

Khi  đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)

Vậy Q=0

13 tháng 3 2020

\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\\ =\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\\ =\frac{x}{\left(y-x\right)^2}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right).\frac{1}{y-x}=\frac{-xy+y^2-z^2+xz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(1\right)\)

Tự làm với 2 phân thức còn lại, ta có:

\(\frac{y}{\left(z-x\right)^2}=\frac{-x^2+z^2+xy-yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(2\right)\)

\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-y^2-xz+yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(3\right)\)

Cộng 3 vế lại với nhau ta có: \(Q=\frac{x}{\left(y-x\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

12 tháng 2 2017

Câu 1, Quy đồng mẫu của 2 về lấy MTC là (x-y)(y-z)(z-x).

Câu 2, Chỉ có thể xảy ra khi a+b+c=x+y+z=x/a+y/b+z/c=0

14 tháng 3 2020

Ta có: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-x-z\\z=-x-y\end{matrix}\right.\)

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(A=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}\)

\(A=\frac{\left(y+x\right)\left(z+y\right)\left(x+z\right)}{\left(-x-z\right)\left(-x-y\right)\left(-y-z\right)}\)

\(A=-1\)

8 tháng 11 2018

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

     \(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Vậy A = 1